
APPENDICES

APPENDIX AA-1

APPENDIX A

Understanding and learning to use the marked item and fixed item files
specified in chapter 8 has proved difficult to the normal NEWDOS/80 user;
therefore appendices A and B have been included to provide examples and more
explanation in an effort to ease this difficulty. Nothing in appendix A or B
is to be construed as overriding the specifications provided in chapter 8;
the two appendices are provided simply and exclusively for examples and
elaboration.

Appendix A was written by a user trying to cope with chapter 8 and is
basically his understanding of marked item and fixed item files.

Appendix B is the NEWDOS/80 author's attempt to provide example programs of
the 5 file sub-types: MF, MU, MI, FF and FI.

File Positioning

File Position (fp) is an operand in all NEWDOS/80 GETS and PUTS, and is
specified in section 8.4.1. When omitted, a null operand is assumed. The fp
operand otherwise commonly consists of a special character, occasionally
followed by other special characters and/or expressions. One form of the fp
operand consists of nothing more than a numeric expression. In the forms,
which follow, special characters are to be used as shown. In those forms
showing a prefixing special character adjoining some other character string,
the special character does not necessarily have to be contiguous with the
rest of the expression; it may be separated from it by a blank or space.

fp Value Meaning

(null)
If the file is an MU, MF or FF type file, and the REMRA is valid, the
file is advanced to the next sequential record; in any other case, the
current file position is not changed and processing continues from the
position left at the termination of data transfer of the previous
GET/PUT. Open leaves REMRA marked invalid for all file types, and sets
current file position equal to 0 (except for mode "E", which causes
current file position to be set equal to the FPDE's EOF value). The
first sequential access for record segmented files always starts at
current file position.

*
The current file position is not changed. This specification allows the
continuation of processing of a particular record by a GET or PUT. It
is primarily used to continue processing a record already partially
read or written. For MU, MF and FF type files, it cannot be used to
advance the file to the next sequential record, even though the file is
actually already positioned at that record, having exhausted the bytes
of the current record. To sequentially advance to the next record, use
fp = (null).

APPENDIX A A-2

#
If the REMRA is valid, the file is positioned to process that record
again; an error condition is raised if the REMRA is invalid. For MU, MF
and FF type files, this specification allows the reprocessing of the
record currently being processed, from the beginning, perhaps with
different variable names or expressions in the IGELs. For MI and FI
type files, it allows the reprocessing of the same data item group as
was processed by the immediately preceding GET/PUT.

$
If the REMBA is valid, the file is positioned to begin processing at
again it the point where the previous GET or PUT was at the end of its
file positioning phase; an error condition is raised if the REMBA is
invalid. This specification allows the reprocessing of a particular
group of data by a GET/PUT, and is primarily used to reposition a file
for partial record I/O. It functions in the same fashion for all
NEWDOS/80 file types.

%
This specification performs a "pseudo FIELD" operation. No data
transfer takes place; the filearea FCB is not changed; the file does
not have to be open when this fp is used. It is used with FF and FI
files to allocate user data strings of fixed sizes from the BASIC
string storage area in high memory.

&
This specification is used only with PUTs, and has no effect on file
positioning. It does however cause the current contents of a filearea
buffer to be written to the diskette. It should be used whenever the
data in the buffer is particularly sensitive. It may be used specifying
the FAN of a PRINT file.

&&
This specification is similar to &, except that in addition the file's
EOF is updated from the FCB to the FPDE. PUT fan,&& allows the
programmer to force the EOF update to the FPDE without having to do a
CLOSE.

!rba
Using this form of fp specification causes GET/PUT processing to begin
at the specified location in the file where rba is a BASIC expression
evaluating to a RBA value. For MU, MF and FF type files, the system
checks to make sure that a record begins at the specified location. In
the case of a MU file, the RBA value must point to an SOR item. This
form of fp specification demands the greatest amount of care and
premeditation on the programmer's part, as if it is used incorrectly,
especially with FF and FI type files, it can be most disastrous. It is
just about the only way to randomly access data stored in MI, MU and FI
type files.

!%
This specification is basically the same as the !rba form except that
the current EOF value is used as the RBA. It is commonly used to
position a file for extension - that is, to add records/data to the end
of the file. To extend a file it must be opened with mode "R"; mode "D"
will yield an error if extension is attempted.

APPENDIX AA-3

!$rba
This specification allows the programmer to position the file for the
next data transfer for that particular filearea,-without regard to the
specific access technique or verb used for the transfer; no data
transfer to user data areas occurs with this specification. No IGEL may
be referred to or included in the GET/PUT using this specification. The
positioning resulting from the use of this specification doesn't become
effective until the next INPUT/PRINT or GET/PUT, and then only if no
additional positioning is specified. It can be used to position a file
for random access in a program which uses a subroutine containing a
single GET/PUT having a (null) fp to do all file access; such a program
could process sequential groups of records randomly distributed
throughout a file.

!$%
The basic function of this specification is identical to !$rba, except
that it uses the current EOF value as the RBA. The GET/PUT using this
specification must not refer to or include an IGEL. Again, the file
position resulting from this specification doesn't take effect until
the next INPUT/PRINT operation, or the next GET/PUT (if another fp
isn't specified).

!#rba
Used only with PUT, this specification sets the filearea's EOF value
equal to the value rba. For the real EOF value of the file to be
altered, that is, the one in the FPDE, the filearea must either be
closed or a PUT && statement executed. The EOF value provided must be
rational for the file type involved. For MF and FF files it must be an
integral multiple of the file's standard record length.

rn (Record Number)
This specification is the same as the one supported by TRSDOS; rn is a
numeric BASIC expression which evaluates to an integer value from 1 to
32767, inclusive. The specified record number is converted to an RBA
which is then used in the same functional manner as !rba.

As mentioned above, certain forms for fp change REMBA, REMRA or EOF. For your
convenience, the fp forms and their effects on these fields are summarized in
the following decision table.

fp REMBA REMRA EOF

(null) 1 1 6
* 1 2 6
3 4 6
$ 4 4 6
% 4 4 4
& 4 4 4
&& 4 4 4
!RBA 1 1 6
!% 1 1 6
!$RBA 5 5 4
!$% 5 5 4
!#RBA 4 4 1
RN 1 1 6

APPENDIX A A-4

Meanings of codes in the matrix:

1 -- The field is set to the RBA resulting from that fp value.

2 -- If REMRA is invalid at the beginning of the statements execution,
or it is an MI or FI file, the field is set to the RBA resulting from
the fp value. In other words, it is set if the current file position is
at the beginning of a record, otherwise it is unchanged.

3 -- The field is set equal to REMRA.

4 -- The field is not changed.

5 -- The field is set to an invalid value.

6 -- For output/update files, the field is changed if a PUT extends the
file.

Altogether, there are four areas in an FCB relevant to 'file positioning.
These are:

Current File Position
This single field can be looked at as being 3 different values,
depending upon where the GET/PUT is in its processing:

GPP1
The file position at the start of GET/PUT execution. Unless
the file has been closed and re-opened, it is the same
value left as GPP3 from the last GET/PUT for that filearea.

GPP2
The resulting RBA value after positioning has been done,
and prior to any data transfer. GPP2 is the value saved as
REMBA and REMRA whenever these values are set.

GPP3
The RBA value after the last byte of data transfer, if any,
real or bypassed, has been accomplished.

REMRA
For MU, MF, FF and field item type files, it contains the RBA
value of the beginning of the record in process. For MI, FT and
INPUT/PRINT files, it is equal to REMBA. See GPP2 above.

REMBA
The RBA value where the previous data-transferring GET/PUT began
its data transfer. If the file is record-segmented, and REMBA is
at the start of a record, REMRA is set equal to REMBA. See GPP2
above.

EOF
The RBA value of the last byte of data in the file, plus 1. For
MU, MF, FF and field item type files, it effectively points to
the next sequential record to be written to the file. For MI, FI
and INPUT/PRINT files, it effectively points to the next
sequential byte to be written to the file.

APPENDIX AA-5

The general method of managing the various fp values in the FCB goes as
follows:

The file is moved from the current file position (GPP1) to the requested
position, if necessary. This may include writing an updated buffer back to
the diskette, computing the new sector address, and reading that sector into
the buffer.

The RBA resulting from the requested positioning is placed in the current
file position (GPP2).

REMBA is set equal to the current file position (GPP2).

If the file is an INPUT/PRINT file, is user-segmented, or is record-segmented
and the current file position (GPP2) points to the start of a record, REMRA
is set equal to the current file position (GPP2).

Data transfer, if any is requested, is done. The current file position (GPP3)
contains the RBA of the byte following the last one transferred.

If the file has been extended, or the fp = INS, EOF is set to the appropriate
value of the two.

APPENDIX A A-6

OPEN

Any file must be opened before the data in it can be processed. The OPEN verb
itself establishes an I/O link between the file and the applications program.
The link's control information is maintained in the filearea (which contains
a FCB). Once opened, the data in the file is made available to the program by
means of INPUTS or GETS; data is placed on the file via PRINTS or PUTS. When
the processing of the data is complete, the file should be closed, thus
breaking the I/O link between the file and the program.

NEWDOS/80 supports five OPEN modes: "I" for sequential input (INPUT verb),
"0" for sequential output (PRINT verb), "R" for random access input/output
(GET or PUT verbs), "E" for sequential output starting at the current EOF for
existing or new files (the "E" could be read as "extend"), and "D" for random
access files which the user does not want expanded/lengthened with PUTS
beyond the current EOF.

NEWDOS/80 BASIC marked item and fixed item file support allows the GET and
PUT verbs to be used with all five modes. The general form of the NEWDOS/80
OPEN verb is:

1. OPEN m,fan,filespec
2. OPEN m,fan,filespec,lrec1
3. OPEN m,fan,filespec,ft
4. OPEN m,fan,filespec,ft,lrec1

where: m
is an expression evaluating to a string equal to "I", "0", "R", "E" or "D".
It specifies the mode of access to be used for the file, as well as the
initial positioning of the file.

fan
is the number of the filearea to be opened.

filespec
is an expression evaluating to the name of the file to be opened.
The expression itself can be a string literal or constant.

ft
is an expression evaluating to a string equal to "FI", "FF",
"MI", "MU" OR "MV". It identifies a particular NEWDOS/80 sub-file
type, which will all be explained shortly. Whenever ft is used in
an OPEN statement, GETS and PUTS are the only way to transfer
data from and to the file. INPUTS and PRINTS must not be used.
Neither may the BASIC FIELD statement be used. All GETs or PUTS
used to transfer data must specify either an IGELSN or contain
the IGEL itself. The applications program must not alter or
directly reference the data in the filearea in any way. Two ft
values require the specification of lrec1 in the OPEN statement;
a third ft allows its optional specification.

lrec1
is an expression evaluating to an integer value between 1 and 256

APPENDIX AA-7

for field item files and between 1 and 4095 for marked item and
fixed item files. It must be specified for all record-segmented
files (except field item files where 256 is assumed if lrec1 is
not specified), and specifies the exact length of all records in
the file for field item, "FF" and "MF" files, or the optional
maximum lrec1 for file type "MU".

Note that the standard forms of BASIC OPEN have not changed (formats 1 and
2), thus allowing existing field-file and print/input file oriented
applications to continue to function. The extensions to the standard forms
identify the file as a NEWDOS/80 file, and define the file type and access
technique used to retrieve and manipulate the data in it.

Of all the file types supported by NEWDOS/80, the easiest one to use and
understand is ''MU''. It defines a file, which contains marked items, and is
segmented into records of varying lengths. The length of a record-is defined
as the difference between the RBA of the record's SOR and the RBA of the next
record's SOR or the RBA of the file's EOF, whichever follows. The record
length need not be specified in the OPEN statement; but if it is provided, it
specifies the maximum record length allowed in the file.

A record in an "MU" file can be updated with another record of the same or
shorter length than it was originally created with, but it cannot be
lengthened. When a record is updated with a record, which is shorter than the
original record, the new record is padded on the right with fill items (bytes
of hex '00') to the end of the original record. This shorter record can later
be replaced with one, which is longer, as long as the new one is not longer
than the record originally written to the file.

The "MU" file type is intended to replace BASIC's sequential input/output
files accessed via INPUT/PRINT verbs. Its greatest strength is that no
special delimiters have to be provided by the programmer to separate two
contiguous string items (in BASIC sequential file support, a comma must be
PRINTed between the strings for the INPUT to be able to separate them). A
secondary benefit of "MU", and all other NEWDOS/80 BASIC files too, is that
numeric values are stored on the diskette in their internal form. That is,
for example, a double precision value is written as an 8-byte item, rather
than an up-to-14 character item requiring conversion back to internal
(8-byte) form on input. Don't forget that in the case of marked item files,
such as "MU", a double precision item actually requires nine bytes due to the
prefixing control character. If an lrec1 is specified in the OPEN statement,
it sets the maximum record length allowable for the file, and must allow for
all control bytes (including SOR items) in each record.

The next most simple forms of ft to use are "MF" and "FF". Both identify a
file as record-segmented, and having records of fixed length. They both imply
that all records have the same internal data structure, but do not guarantee
that condition. The OPEN statement must specify the exact logical record
length of all records in the file. In the case of "MF", the marking control
bytes must also be accounted for in the length (note that an "MF" file
doesn't use SOR items at the start of each logical record since BASIC knows
where each record starts). Each GET/PUT checks the IGEL's data length against
the lrec1 specified at OPEN time, and raises an error condition if the IGEL's
length is greater.

APPENDIX A A-8

The most difficult forms of ft to use are "MI" and "PI". They specify that
the file is record segmented entirely under user control. The "lrec1" must
not be specified in the OPEN statement for these file types. These forms
allow a file to contain a very complex data relationship, without BASIC's
knowledge of the users data structure. That is, BASIC cannot advance from one
user record to another.

APPENDIX AA-9

CLOSE

The CLOSE verb breaks the I/O link set up by the OPEN verb between the BASIC
application program and a file. Its general format has not been modified by
NEWDOS/80.

Depending on the file's mode and type, the contents of the filearea buffer
may be written to the diskette by this verb. For output and random-access
files the file's directory entry is updated to reflect the current EOF value
stored in the filearea's FCB.

APPENDIX A A-10

GET

In field item (TRSDOS random) file processing, the GET statement is used to
read a particular record into the filearea's buffer. The FIELD statement is
then used to adjust the data pointers of string variables to address the
buffer itself. This method of data access causes the file to be termed a
field item file in NEWDOS/80 since all the other file types may also be used
randomly.

In addition to continued support of field item files, NEWDOS/80's GET
statement is used in marked item and fixed item file processing to transfer
data from a file to user-specified variables, define the variables
themselves, or position a file for later operations. The actual transfer of
data from the diskette to the buffer occurs only as needed by the BASIC's
determination of the IGEL data requirements in relation to the data currently
in the buffer.

The general form of the GET statement is:

1. GET fan (a null fp is assumed)
2. GET fan,fp
3. GET fan,fp,igelsn
4. GET fan,fp,,igel

Formats 1 and 2 are used for field item files and are compatible with TRSDOS
BASIC. They naturally may also be used in NEWDOS/80 BASIC application
programs.

Formats 3 and 4 are unique to NEWDOS/80 BASIC. They must be used in data
transfer GET whenever the filearea is open for marked item or fixed item file
operations. Format 2's usefulness has been expanded by the addition of
several new fp specifications unique to NEWDOS/80.

Format 3 specifies the location of the IGEL containing the data names, which
are to contain the data at the completion of the GET; format 4 contains the
IGEL as an integral part of the GET statement itself.

In NEWDOS/80, no function in the IGEL or the fp parameter may reference a
filearea, even if that filearea is the same as that used by the GET or PUT
statement.

At the successful completion of a GET statement, the filearea is left
positioned at:

a. the next byte of the file for fixed item files.
b. the next item in the file for marked item files.
c. the next 256 byte record for field item files.

If an error is encountered during the processing of a GET statement, the
filearea is reset to its status and content prior to the execution of the
statement. After correction of the error, the GET statement may be executed
again. The contents of the variables named in the IGEL are entirely
unpredictable when an error is detected, and should not be used unless the
GET has been re-executed successfully.

APPENDIX AA-11

When a GET statement refers to or contains an IGEL, successive file items are
transferred to successive variables named in the IGEL.

For fixed item files:
String variables of the IGEL are filled with the number of bytes
specified in the expression prefix. As a result, the length of the
variable is made equal to the value of the prefix.

Numeric variables of the IGEL are filled with the number of bytes
corresponding to that item's internal form. (Integer items are two
bytes long, single precision items are four, and double precision are
eight.)

Prior to the first GET which transfers data to user variables, a GET
using ft = % may be issued. The file referenced by the fan need not
necessarily be open when this GET is issued, as the purpose of this GET
is to perform the pseudo FIELD function for fixed item file operations.
As the IGEL items are processed, numeric variables are left unchanged,
(len)$ and (len)# items are ignored, and string variables have their
length set to the value of the expression prefix, and are truncated or
padded on the right with blanks as necessary. If a string variable
exists at the time the pseudo FIELD is issued and its contents/value
doesn't reside in the BASIC string area, its contents are moved there.
This is done in an attempt to ensure that enough string space exists
for continued operation, as the subsequent data transfer GETS will
actually move data to the variable, rather than simply changing the
variables data pointer. Once referred to by a pseudo FIELD operation,
string variables should have their contents changed only by LSET or
RSET to ensure that the variables lengths do not change. In NEWDOS/80
version 1, the pseudo FIELD function was required before any PUTS to a
fixed item file; in version 2 this is not required and many programs
using fixed item files will elect not to use the pseudo FIELD function
at all.

If the file is record segmented and there are fewer bytes in the record
from the current file position at the start of data transfer of the
item than are requested by the IGEL item, a "RECORD OVERFLOW" error
condition is raised.

For marked item files:

A null IGEL expression causes the corresponding file item to be
skipped.

The expression prefix of a string variable is used to limit the number
of characters actually transferred to the variable. If the file item is
shorter than what the expression prefix allows, the length of the
string variable is set to that of the file item. If the file item is
longer than what the expression prefix allows, the file item is
truncated on the right to that length, as would be done by an LSET.

SOR and fill items are skipped as they are encountered.

If the file item type and the IGEL item type are incompatible, a "TYPE
MISMATCH" error is raised. If for example, the file item type were
single precision and the IGEL item type were string, the error would be

APPENDIX A A-12

raised. If however, the IGEL item type were integer, no error would be
raised unless the file item's value exceeded what was legal for integer
items.

If the file is record-segmented, and there are fewer items remaining in
the record from the current file position at the start of data transfer
of the item than are in the IGEL, a "RECORD OVERFLOW" error is raised.

Two special forms of fp may be used to set the file position for subsequent
processing, regardless of the type of processing normally done for the file.
These are fp = !$rba and fp = !$%. Use of either of these forms cause REMRA
and REMBA to be marked invalid. Use of either of these ft values in a format
3 or 4 GET is invalid, as no actual data transfer takes place.

More than one GET may be used to retrieve successive file items from a single
record. This technique is called partial record I/O. The first item in a
record could, for example, identify the record as containing a name and
address, a transaction number and amount, or an invoice number and expected
ship date. The first byte could be read by itself and used to transfer
control within the program to the appropriate routine to handle the data,
which follows.

Partial record I/O as an access technique can be readily used with fixed item
files and field item files. In field item files, the technique calls for
reFIELDing when the new record is not the same type as the previous record.
In marked item files, items to be bypassed in a record are simply left as
null items in the GET's IGEL. In fixed item files, the length of the fields
to be bypassed must be determined, and that sum be specified as the length
prefix of a (len)$ IGEL item, in order to position the record to the proper
byte to be transferred. The real strength of partial-record I/O with fixed
item files is that as little as a single field imbedded within a record can
be updated independently of all other data in the record; with marked item
files, all items beyond the one to be updated would first have to be read,
then re-written with the item being updated to maintain their content. The
primary benefit of partial record I/O is that several record formats can
reside in a single file and only as much data need be transferred as
necessary to identify the particular format.

APPENDIX AA-13

PUT

In field item file processing, the programmer executes, if not done
previously, a FIELD statement to define the variables' buffer overlaying main
memory positions. Next, the values for those variables are moved into them
using LSET or RSET statements. Lastly, the record is written (or buffered)
using the PUT statement.

For marked item and fixed item file processing, the contents of BASIC
variables are written (or buffered) using the PUT statement without the need
of moving the data first to special encoded variables. Instead an IGEL is
used to specify during the PUT which variables are to have their contents
sent to the file.

Remember, no IGEL expression or the-fp expression may contain functions that
reference a filearea.

The general form of the PUT statement is:

1. PUT fan (a null fp is assumed)
2. PUT fan,fp
3. PUT fan,fp,igelsn
4. PUT fan,fp,,igel

Formats 1 and 2 are used in field item file operations and are compatible
with TRSDOS BASIC. They naturally may continue to be used in application
programs running under control of NEWDOS/80.

Formats 3 and 4 are unique to NEWDOS/80 BASIC. One or the other or both must
be used whenever data is transferred to the file during marked item or fixed
item file processing. Format 3 specifies the location of the IGEL containing
the expressions to be sent to the file; format 4 contains the IGEL itself as
a part of the PUT statement. Format 2 PUTS may be interspersed with formats 3
or 4 to achieve the necessary file positioning for subsequent data transfer.

At the successful completion of a PUT statement, the filearea is left
positioned at:

a. the next byte of the file for fixed item files.
b. the next item in the file for marked item files.
c. the next 256-byte record for field item files.

If an error is encountered during the processing of a PUT statement, the
filearea is reset to its status and positioning prior to the execution of the
PUT statement. The data in the file as a result of the error is completely
unpredictable, and will most likely cause errors on a subsequent GET. This
situation occurs only during the updating of existing records; if possible
and practical, a PUT should be issued later in an attempt to correct the
error. In an effort to reduce the possibility of damage to the file when the
file is opened using the "R" or "D" mode, NEWDOS/80 BASIC processes the IGEL
twice in its entirety, once to catch errors in IGEL specification, and again
to actually transfer the data to the buffer.

APPENDIX A A-14

When a PUT statement refers to or contains an IGEL, the contents of
successive IGEL expressions are transferred to the filearea buffer and become
file items.

For fixed item files:

A string variable or expression may have a length different than the
one allowed by the expression prefix in the IGEL. Strings which are
shorter have the corresponding file item padded on the right with
blanks; strings which are longer have the corresponding file item
truncated on the right in the manner used by LSET. In other words, the
expression prefix value determines exactly how many bytes are to be
moved to the file item.

A record overflow error condition is raised if the logical record
length is exceeded. During whole-record I/O, if the sum of all item
lengths in the IGEL exceeds the LRECL, the error is raised. During
partial-record I/O, if the sum of all item lengths in the IGEL exceeds
the number of bytes left in the record, the error is raised.

Prior to the first PUT statement which actually transfers user data to
the buffer, a PUT using ft = % may be issued. The file referred to by
the fan need not necessarily be open at the time of this PUT, as its
purpose is to perform the pseudo FIELD function. As the IGEL items are
processed, numeric items are left unchanged, (len)$ and (lend items are
ignored, and string expressions have their length set equal to the
value of the expression prefix, and are truncated or padded on the
right with blanks as necessary. If the string variable exists at the
time of the pseudo FIELD PUT and the string itself doesn't reside in
the BASIC string space, it is moved there. Once referred to by a pseudo
FIELD PUT statement, string variables should have their contents
changed only by LSET or RSET statements to ensure that their lengths do
not change. In NEWDOS/81 version 1, this pseudo FIELD function was
required before any PUTS to a fixed item file; in version 2 this is no
longer required and many programs using writing to fixed item files
will elect not to use the pseudo FIELD function at all. The pseudo
FIELD function is left in existence for the programmer who wants to
assure IGEL related string variables maintain the required length at
all times.

For marked item files:

SOR and fill items are inserted into the filearea buffer as dictated by
the file's ft, the PUT's fp and the IGEL data length versus the file's
record length.

Nearly anything syntactically legal on the right hand side of a LET
expression's equal sign is legal as an expression in an IGEL referenced
by a PUT statement, excepting that a filearea may not be referenced in
such an expression. Specifically excluded from appearing in any IGEL
expression are LOC, LOF, EOF and any other expression, which references
a fan.

When a string expression in an IGEL has a length prefix, the prefix
determines the maximum number of characters to be written to the file.
If the string is shorter than the expression prefix allows, the string

APPENDIX AA-15

is written to file as is. If the string is longer, the corresponding
file item it is truncated on the right as would be done by an LSET
operation.

Strings require either one or two marking bytes, depending on the
number of bytes in the string. If the string has from 0 to 127 bytes in
it, it requires only one marking byte to describe it on file. If it has
128 bytes or more, then two marking bytes are required to describe it.
All these marking bytes must be allowed for when specifying an lrec1 at
open time.

Numeric IGEL expressions are placed in the buffer in their internal
BASIC form: 2 bytes for integers, 4 bytes for single-precision numbers
and 8 bytes for double-precision numbers. Don't forget that each
individual file item has a marking byte associated with it, and that
the correct lengths of the item types just mentioned are 3, 5 and 9
bytes.

Numeric literals and expressions in the IGEL are first converted to the
most compact internal BASIC data type that preserves their precision
before being sent to the file. For example, the numeric literal 3.14159
would be sent to file as a single precision number (5 bytes including
marking byte); the value resulting from LEN(A$) minus LEN(B$) would be
sent to file as an integer number (3 bytes including marking byte).

Two or more PUT statements may be used to output all the items of a
record. The number of bytes actually comprising a single logical record
cannot exceed the lrec1 value specified in the OPEN statement, or the
system maximum of 4095 bytes.. Any attempt to exceed either of these
limits results in a "RECORD OVERFLOW" error.

In the case of MU and MF type files opened for random access updating
purposes, the record existing on file, from the current file position
at the beginning of data transfer for the PUT, to the record's end
(defined by the next SOR, or EOF) is replaced in its entirety. If the
cumulative IGEL data length is less then the file record's remaining
length, the IGEL data is sent to the file and padded out with fill
items to completely fill the file record. Be very careful when
operating in this mode, because if the PUT's IGEL defines fewer items
than exist in the file record at the time of update, the excess file
items are eliminated; later GET statements will encounter problems if
they expect the original number of items to be present in that record.

Items in a MI type file cannot be updated as the system has no idea
where the user's record ends, and therefore cannot pad to the end of
the record as it does for MU and MF files.

For both fixed item and marked item files:

The filearea's buffer is actually written to the diskette when:

The last byte of the buffer is filled with data from the IGEL,
and more data has yet to be moved.

A PUT statement with an fp of "&" or "&&" is executed, causing
the buffer to be written to the diskette in its current state.

APPENDIX A A-16

The file is closed, explicitly by fan, or implicitly by a general
(non-specific) CLOSE.

If the data in the file be especially critical, the programmer should
consider the use of PUT statements with the fp of "&". This will cause the
filearea's buffer to be written to the diskette without disturbing the
current file positioning. If there is no data in the buffer waiting to be
written to the diskette, this particular PUT statement will be ignored.
Should some other filearea used by the program require the data in this
filearea to be disk-resident, the fp of "&" must be used. Don't overlook the
fact that an fp of "&" is used only in a format 2 PUT; any data to be written
to file must first have been placed there by a format 3 or 4 PUT. The use of
fp = & is not restricted to marked item or fixed item files - it may be used
with field item files or print/input disk files also.

Everything said above for the PUT fan,& statement also applies to the PUT
fan,&& statement which, in addition, writes the file EOF from the filearea's
control information back to the file's directory entry.

Two special forms of fp may be used to set the file position for subsequent
processing normally done for the file, regardless of the actual type of
processing involved: GET, PUT, INPUT or PRINT. These are fp = !$rba and FP =
!$%. Use of either of these forms causes REMRA and REMBA to be marked
invalid. The file is positioned so that the next GET/PUT/INPUT/PRINT verb
begins processing either at rba or EOF, if no further fp is specified. No
data movement occurs using these fp values, as they are allowed only in a
format 2 PUT.

A PUT statement using an fp of !#rba causes the file's EOF to be set to the
RBA value rba. Don't forget that the EOF value is not written to the file's
FPDE until a CLOSE or a PUT fan,&& statement is executed. The EOF may be
changed many times in this fashion before it is made final. An error
condition is raised if the OPEN statement's mode was "D", and the RBA exceeds
the current EOF value. This fp value may only be used in a format 2 PUT.

As was the case with GET for sequential input, the PUT statement can be used
in a sequential output mode. A marked item or fixed item file can be created
sequentially with PUT statements after having been opened with mode "O", and
later read sequentially with GETS after having been opened with mode "I". The
same file can be updated randomly by use of GET and PUT statements when the
open mode is "R" or "D". Single data fields in FF and FI type files can be
updated using partial record I/O access techniques.

Should a particular data file be especially sensitive, and require read-only
random access, the use of open mode "R" is not required; open mode "I" may be
used instead. The use of this particular mode will cause any PUT attempted to
get a "BAD FILE MODE" error.

APPENDIX AA-17

LOF

The function of the LOF statement is to return to the programmer the record
number of the last record of the file. Its general format is:

LOF(fan)

The fan specifies the number of the filearea for which the last record number
is being requested. If the file is empty, a zero is returned. LOF naturally
may be used only with field item, MY and FF type files.

APPENDIX A A-18

LOC

The LOC function, in TRSDOS BASIC, returned to the programmer, the record
number last accessed via GET/PUT for a specified filearea. In NEWDOS/80
BASIC, its function has been expanded to allow the programmer to find the
file location of a group of items, records or the files' EOF, or determine if
the current file position is exactly at or beyond the file's EOF. Its general
formats are a follows:

1. LOC(fan) performs essentially the same as in TRSDOS
2. LOC(fan)$
3. LOC(fan)%
4. LOC(fan)!
5. LOC(fan)#

where fan specifies the filearea number containing the requested
information.

Format 1 (no suffix) is the one used in TRSDOS BASIC. For field item files
(as are supported by that BASIC) and MF and FF files, it returns the number
of the record most recently read or written via GET/PUT. If the file has not
been accessed, a value of zero is returned, except in the case of a file
opened using mode "E", where the record number of the last record in the file
is returned. If the file being referenced is not made of fixed-length
records, a "BAD FILE MODE" error condition is raised.

Format 2 ("$" suffix) is used to provide a true/false indication of the
relationship of the filearea's positioning to the file's EOF. It returns a -1
(BASIC IF statement 'true') or a 0 (BASIC IF statement 'false') as follows:

For record-segmented (fixed item, MU, MF and FF type) files:

If the REMRA is valid, and the RBA of the start of the next
record (not necessarily the current file position!) is equal to
or greater than the EOF value, a 'true' value is returned;
otherwise a 'false' value is returned.

If the REMRA is invalid and the RBA of the current file position
is equal to or greater than the EOF value, a 'true' value is
returned; otherwise, a 'false' value is returned.

For user-segmented (MI and FI type) files, and for print/input files:

If the RBA of the current file position is equal to or greater
than the EOF value, a 'true' value is returned; otherwise, a
'false' value is returned.

Format 3 ("%" suffix) returns to the programmer the file location of the
current file EOF in RBA format. This value can be used in the development of
indices to the file, where the indexing item is built prior to the data
record being added to the file at the EOF location. Using this form of LOC
allows indices to be created during the sequential creation of the prime data
file.

APPENDIX AA-19

Format 4 ("!" suffix) returns the RBA value of the next logical record for
field item, MU, MF and FF type files, if the REMRA is valid. In all other
cases (including print/input files), it returns the RBA value of the current
file position. For record segmented files, the value returned can be used to
create an indexing item for the sequential record before the data record has
been written to the file. For user-segmented and print/input files, the value
returned can be used to create an indexing item for the group of data items
prior to writing them to the file. For the indexing value to really be good,
a PUT with a null fp, or a PRINT, must be used to write the data; nearly all
other fp forms will cause the RBA value returned to be different from the
actual location of the data. As with format 3, this form can be used to
create indices as a sequential file is being written.

Format 5 ("#" suffix) returns the current REMRA in RBA format. A "BAD FILE
MODE" error condition is raised if the REMRA is invalid, due for example, to
the use of an FP m !$%. This too can be used for all file types to create
indexing items for records or groups of data after, however, the record or
data group has been written.

By using the values returned by LOC(fan)%, LOC(fan)! or LOC(fan)#, the
programmer is able to build indices to either records (record-segmented
files) or groups of items (user-segmented files and print/input files). The
values, returned can be included in records/file items and later used to
position the filearea via fp types !rba or !$rba.

APPENDIX A A-20

MU FILES

The MU file type is the easiest of all NEWDOS/80's file types to implement.
When it was originally conceived, it was intended as a replacement for
TRSDOS's sequential file support. In TRSDOS, sequential files could not be
updated; in NEWDOS/80 all but print/input and MI type files can be updated.

The MU type file is segmented into records of varying lengths and each record
is detectable by the system. This attribute relieves the programmer of the
need to be aware of the size of each record. The programmer can impose a
smaller record size maximum than the system's maximum of 4095 bytes by
specifying a lrec1 value in the OPEN statement. Any record exceeding the
maximum record length will cause a "RECORD OVERFLOW" error condition.

Besides being record-segmented, the file items in a MU file are all marked.
The marking bytes occupy space on the file, and must be included in any
record length calculations along with the SOR byte, which marks the beginning
of each record. These marking bytes identify the type of data, which follows
the byte, and in the case of strings, tells the system the length of the
string. Strings may be 0 to 255 bytes long, just as in BASIC; strings of 128
to 255 bytes require 2 marking bytes instead of the 1 required by all other
items. Numeric items are stored on the disk in their internal form: integers
as 2 bytes, single-precision items as 4 bytes, and double-precision items as
8 bytes. Don't forget that as marked-file items these lengths must be
increased by 1 to 3, 5, and 9 bytes respectively.

Even though the numeric items are stored in their internal forms on the disk
in all the NEWDOS/80 file types, BASIC's CVx and MKx do not (indeed, must
not) be used to perform a pseudo-string conversion in order to cause this
form of data storage to occur; CVx and MKx must still be used to accomplish
this form of data storage for field item files, as was the case with TRSDOS
BASIC.

A MU file can be created by specifying "0" as the mode in the OPEN statement;
the file will be created using the data in successive PUTS without regard to
the file's existence at the time of the open. AMU file may also be created
using mode "R" in the OPEN statement only if the file did not exist prior to
the open. A third method of creating a MU file is to use mode "E" in the OPEN
statement for a previously non-existent file, or an existing file, which is
empty.

A existing MU file can be expanded sequentially by specifying mode "E" in the
OPEN statement. As noted above, if the file is empty, it will effectively be
created rather than expanded/extended. An alternate method of sequentially
expanding a MU file is to specify mode "R" in the OPEN statement. In this
mode if non-null fp's are specified, the system writes padding bytes from the
current EOF to the specified beginning of the new record. Any PUT to a file
position less than the EOF causes an updating action to occur, not an
extension of the file.

A MU file may be accessed sequentially by specifying "I" as the mode in the
OPEN statement; use of this mode prevents accidental updates from occurring.
The file may also be accessed randomly when opened with mode "I". If the file
is non-existent at the time of the open, an error condition is raised. A MU
file may also be accessed sequentially by specifying "R" or "D" as the mode

APPENDIX AA-21

in the OPEN statement. Using these modes, if the file was non-existent prior
to the open, any GET issued without a prior PUT and subsequent repositioning
will cause an error condition to be raised.

A MU file may be updated by specifying mode "R" or mode "D" in the OPEN
statement. The use of mode "D" precludes the expansion of the file. In either
of these modes, anything from an entire record to a single item may be
updated, depending upon the fp values used and the contents of the IGEL.

To understand the workings of the system on a MU type file, we'll do the
following things. First, we'll create a MU file using a very simple, short
BASIC program. Then, by working in the so-called calculator mode, we'll
access the file and update it. To create the file, enter and RUN the
following BASIC program:

10 CLEAR 250
20 OPEN "O", 1, "MU/DAT", "MU"
30 PUT 1,,,"ABCDEF","2ND STRING";
40 PUT 1,,,STRING$(120,"*")+"0123456789";
50 I%=2:I!=4:I#=8
60 PUT 1,,,I$,I%,I!,I#;
70 CLOSE

Save the program with an appropriate name just in case you need it later.

Now, notice that the program uses the simplest form of IGEL in statements 30
and 40; the values to be written to the file are in the IGEL proper. The PUT
at 60 references the four different BASIC data types: string, integer, single
precision and double precision. Notice also that no lrec1 specification was
in the OPEN statement. This allows the records to be as much as 4095 bytes
long.

Run the program to create the file named "MU/DAT". For study purposes, run
the SUPERZAP program using DFS to read the sector written by MUFILE.

The first byte of the sector is a hex 70. This is the SOR byte. All records
in a MU file start with this byte. Be aware that not all hex 70's are start
of record bytes, however, that particular bit configuration can occur in
numeric values as well as in strings where it is a lower-case "p".

The second byte is a marking byte identifying the next 6 bytes as a string.
Adding 6 to the displacement of the first byte of the string will give us the
displacement of the marking byte for the second string (a hex 8A). It defines
a string 10 bytes long. If you now count to the 11th byte down from that
marking byte, the SOR byte for the second record will be found (at
displacement hex 13). The following marking byte (a hex 71) identifies a
string of greater than 127 bytes long; the byte following that marking byte
contains the length, and is not a part of the string data itself. A little
hex arithmetic at this point will show that the SOR byte of the third record
will be found at displacement hex 98. The marking byte following that SOR
identifies a string zero bytes long: a null string. The next marking byte
(hex 72) identifies the following 2 bytes as an integer number. Following the
integer is a marking byte (hex 73) identifying the next 4 bytes as a single
precision number. Following that number is a marking byte (hex 74)
identifying the next 8 bytes as a double precision number. At this point

APPENDIX A A-22

(displacement hex AB) we've exhausted the data we actually wrote to the disk;
any data, which follows, is unpredictable.

Now that we've seen how data is stored in a MU file, as well as any other
marked item file for that matter, we'll access the data using GETS in the
"calculator mode" and analyze the results. Later, we'll introduce a few
errors. Before going any further, return to the BASIC READY state, enter
CLEAR 50 and NEW, and type in the following three-line program (this will
save steps later).

10 PRINT LOC(1)$; "$ EOF TEST "; LOC(1)%; "% EOF RBA"
20 PRINT LOC(1)!; "! NEXT RCD RBA ";
30 IF LOC(1)! = 0 THEN PRINT ELSE PRINT LOC(1)#; "# REMRA"

The purpose of the program is to display the file positioning values
available to us. For the sake of clarity, the first character of the string
identifies the LOC suffix used to get the value displayed and the remainder
of the string a mnemonic associated with that particular LOC function. You
may want to save this program also, as it will be used in experiments with
all the other file types later.

The first thing to do now is to open the file for input. Type in:

OPEN "I", 1, "MU/DAT", "MU"

Now enter "GOTO 10" to run the program entered a moment ago. (You must use
GOTO rather than RUN because RUN closes any open files.) The system will
respond with:

0 $EOF TEST 171 % EOF RBA
0 ! NEXT RCD RBA

Notice that the REMRA value isn't printed. That's because the value hasn't
been set yet, and is marked as invalid by the system. Because the program we
entered isn't too smart, it simply checks for a zero next record value,
rather than attempting to be sensitive to the actual validity of the REMRA.

Now we'll read the first record in its entirety. Type in:

GET 1,,,A$,B$; : PRINT A$, B$: GOTO 10

The system will respond with:

ABCDEF 2ND STRING
0 $ EOF TEST 171 % EOF RBA
19 ! NEXT RCD RBA 0 # REMRA

Notice that the two EOF related values have not changed, but that the next
record RBA has. It now contains the decimal displacement of the SOR byte of
the second record. This is the normal action of the GET on a record-segmented
file. Notice also that the REMRA has now appeared, and that it has a value of
zero. Remember that for record segmented files the REMRA contains the RBA of
the latest record involved in the GET or PUT for that filearea, unless its
has been marked invalid due to the use of OPEN or !$RBA.

APPENDIX AA-23

Now we'll go back and read the first record again in its entirety by using
the fp value which causes file positioning back to the REMRA value. To prove
the record has been read a second time, we'll reverse the order of the
variable names. Type in:

GET 1,#,,B$,A$; : PRINT A$, B$: GOTO 10

The system will respond with:

2ND STRING ABCDEF
0 $ EOF TEST 171 % EOF RBA
19 ! NEXT RCD RBA 0 # REMRA

Again, the EOF values have not changed. This time, however, neither have the
other two values. This is because the file's next record pointer was changed
to the REMRA value prior to the data transfer. The next record pointer was
then moved to the REMRA, followed by the transfer of the data to the named
variables. The same general method is followed when !rba is specified for the
fp.

Let's get daring now, and ignore the contents of the next record (the one
with the 120 asterisks in it), and at the same time position ourselves to
process the third record. Type in:

GET 1,,,; : GOTO 10

The system will respond with:

0 $ EOF TEST 171 % EOF RBA
152 ! NEXT RCD RBA 19 # REMRA

Nothing really surprising there; again, in the case where no file positioning
was specified in the GET, the next record RBA was moved to the REMRA. With
the lack of variable names in the IGEL, no data transfer occurred, and the
file was left positioned to the record's first item.

Now let's try some of partial record I/O. We'll start by transferring only
the string from the third record, and leave ourselves positioned so that the
next transfer will begin at the integer. Type in:

GET 1,,,A$; : PRINT A$: GOTO 10

The system will respond with:

(blank line)
-1 $ EOF TEST 171 % EOF RBA
171 ! NEXT RCD RBA 152 # REMRA

Several things should be noted here. Since the file was left positioned to
the 2nd record's 1st item by the previous GET and the GET in this example
specified fp = (null), the file was automatically advanced to the beginning
of the third record's 1st item by this GET's file positioning phase. Then the
3rd record's first item was read, and the file was left positioned to the 3rd
record's second item. We've started processing the last record in the file.
The system hasn't told us that, but has made the information available to us
through the LOC(fan)$ statement. in common sequential data processing

APPENDIX A A-24

situations, the EOF status of a file is tested as a function of the GET
logic, and transfer of control is made to an end-of-data routine specified by
the programmer. As no provision has been made for the specification of such a
routine in NEWDOS/80, the EOF status of the file must be tested immediately
prior to the GET statement attempting to transfer the next record's contents
into memory, and appropriate action taken if the EOF condition is found to be
true.

Notice that the LOC(fan)! value is the same as the EOF RBA value, even though
we transferred only the first item of the last record. This is because in the
case of record-segmented files, the function returns the RBA of the next
record. Only when it is used on a user-segmented file does it return current
file position. If you've gone back to chapter 8, you've seen that there's no
way to get the current file position back from the system. There isn't, nor
is there a way to get the REMBA either. Somebody out there will probably find
a way via PEEKS and so on, but the fact remains that BASIC itself doesn't
have provision for telling you simply and directly.

To show that we are indeed positioned at the record's 2nd item, the integer,
we'll read just that field. Type in:

GET 1,*,,I; : PRINT I : GOTO 10

The system will respond with:

2
-1 EOF TEST 171 EOF RBA
171 NEXT RCD RBA 152 REMRA

Did you notice the variable type of "I"? It's single precision, but the file
item transferred to it was an integer. The changing of type between a file
item and a variable is allowed, so long as it is allowed in BASIC.

Now let's go back and transfer the integer and the single precision items
using the REMBA to position the file before the transfer. Type in:

GET 1,$,,K,J; : PRINT J; K : GOTO 10

The system will respond with:

4 2
-1 $ EOF TEST 171 % EOF RBA
171 ! NEXT RCD RBA 152 # REMRA

The REMBA was set to the file's RBA at the start of the previous GET.
Regardless of the number of fields transferred or bypassed, the starting byte
RBA is remembered. Again, none of the LOC functions has changed.

To prove that the REMBA hasn't changed with the multiple file item transfer,
let's transfer the integer and the double precision items next. Type in:

GET 1,$,,J,,I; : PRINT I; J : GOTO 10

The system will respond with:

APPENDIX AA-25

8 2
-1 $ EOF TEST 171 % EOF RBA
171 ! NEXT RCD RBA 152 # REMRA

Notice that by omitting a variable name in the IGEL in the position where the
single precision file item occurs, that the file item is bypassed. Again,
both file items have their types changed as they are moved to the variables.

Now we'll try some RBA positioning to see how that works. Type in:

GET 1,l0,,A$; : PRINT A$: GOTO 10

The system will respond with:

ABCDEF
0 $ EOF TEST 171 % EOF RBA
19 ! NEXT RCD RBA 0 # REMRA

The use of a specific RBA provided by the programmer, whether it's a number
as in this example, or some variables contents, or an expression, causes the
RBA to be moved to the next record pointer just as the REMRA is moved there
when "#" is used for fp. The sequence of actions is the same from that point
on for the two fp's just mentioned.

Let's try the other RBA positioning technique. Type in:

I=152 : GET 1,!$I : GOTO 10

The system will respond with:

0 $ EOF TEST 171 % EOF RBA
152 ! NEXT RCD RBA
BAD FILE MODE

Hey! Was that supposed to happen? You bet! Both the REMRA and REMBA were
tagged as invalid by the system due to the fp type used. It does nothing more
than set the next record pointer. No data transfer occurs.

Now we'll try it again, but this time with a "later" data transfer. Type in:

GET 1,!$19 : GET 1,,,A$: PRINT A$: GOTO 10

The system will respond with:

OUT OF STRING SPACE

Another error? Why? Because when we started this session, we did a CLEAR 50,
and the string we're trying to transfer is 130 bytes long. Don't forget that
NEWDOS/80 doesn't change the string variable's pointer to point to the
buffer, but moves the string to the BASIC string space at the top of memory
as if a LET statement had been executed. Now type in:

GET 1,,,(10)A$; : PRINT A$: GOTO 10

APPENDIX A A-26

The system will respond with:

0 $ EOF TEST 171 % EOF RBA
152 ! NEXT RCD RBA 19 # REMRA

NOTE: the same file item was inputted as for the previous GET. Due to the
error that occurred, the filearea, but not the data, was restored to what it
was at the beginning of that previous GET. Note that only the first 10
asterisks of the 120 in the file item were transferred to A$.

That just about exhausts the fp's we can use. The ones not covered yet are
fairly well explained in chapter 8. It is time now to try some updating of
records, both in whole and in part. Before we can do that however, the file
must be opened for input and output. Type in:

CLOSE : OPEN "R", 1, "MU/DAT", "MU" : GOTO 10

The system will respond with:

0 $ EOF TEST 171 $ EOF RBA
0 ! NEXT RCD RBA

That is just as it was after the open for input only. The mode we just
specified allows the file to be expanded (which we will do shortly). If we
wanted to not allow the ability to expand the file beyond its existing EOF,
we would have specified mode "D".

First, let's simply replace the first record on the file with a single field.
Type in:

PUT 1,,,"RECORD REPLACED"; : GOTO 10

The system will respond with:

0 $ EOF TEST 171 % EOF RBA
19 ! NEXT RCD RBA 0 # REMRA

Notice that the next record pointer is pointing to the second record, just as
if a GET were issued.

Now, let's replace the double precision value in the third record with 3
times its complement. Type in:

I=152 : GET 1,!I,,,,;
GET 1,*,,D#; : PUT 1,$,,3*-D#; : GOTO 10

The system will respond with:

-1 $ EOF TEST 171 % EOF RBA
171 ! NEXT RCD RBA 152 # REMRA

APPENDIX AA-27

Again, the system is ready to process the next record even though it's
positioned at EOF. We can't transfer any information from this file position,
but can write additional new records to the file.

To demonstrate this, type in:

PUT 1,,,"THIS IS THE FOURTH RECORD"; : GOTO 10

The system will respond with:

-1 $ EOF TEST 198 % EOF RBA
198 ! NEXT RCD RBA 171 # REMRA

It's easy to see that the file has been extended. You should be aware that
the new EOF hasn't yet been recorded in the FPDE in the directory. If there
were to be a power outage at this point, our little example file would show
no change from when we first opened it for update. We could ensure that the
file has the new data recorded in it by doing a PUT using the fp of &. That
would only write the buffer to the file. To update the FPDE's EOF value,
either a CLOSE or a PUT fan,&& must be done. A CLOSE will also write out an
updated buffer, if any.

Now let's go back to the second record and replace its single file item with
several smaller ones. We'll do this using a couple of PUTS. Type in:

PUT 1,!19,,"ITEM 1",3.14159*2;
PUT 1,*,,"ITEM 3",4,10D2;
PUT 1,*,,"LAST ITEM RECORD 2"; : GOTO 10

The system will respond with:

$ EOF TEST 198 % EOF RBA
152 ! NEXT RCD RBA 19 # REMRA

Once again, the next record pointer has the RBA of the record following the
one we're processing, and the REMRA has the RBA of the record last processed.
Note that all three PUT statements wrote items into the same record.

To show that the record has been updated type in:

GET 1,#,,A$,I,B$,J,K,C$; : PRINT A$,B$,C$,I,J,K : GOTO 10

The system will respond with:

ITEM 1 ITEM 3 LAST ITEM IN RECORD 2
6.28318 4 1000
0 $ EOF TEST 198 % EOF RBA
152 ! NEXT RCD RBA 19 # REMRA

That's pretty conclusive, isn't it? If we were to try to GET more data using
the fp = *, we would find a "RECORD OVERFLOW" error staring back at us. We
could, if we wanted to, add more data to this particular record, just as long
as we didn't exceed its total original length of 131 bytes.

APPENDIX A A-28

The only thing remaining to be done is to update the EOF value on disk. To do
this, simply type in:

CLOSE

It should be noted, we could have used the statement:

PUT 1,&&

to update the EOF into the directory without closing the file. We could then
have continued processing the file.

Once again, let's examine the file using SUPERZAP. Now you'll find SOR bytes
at displacements 0, 13, 98 and AB. Examine The first record closely. The
string marking byte (hex 8F) shows a length of 15 bytes. Adding hex F to the
starting displacement of the string yields a result of hex 11. Looking at
that displacement, you'll find the first of two bytes of hex 00. These are
fill bytes which are skipped by the system as GETS are processed. If we were
to try to retrieve two strings from the first record, as were there before
our little updating session, we'd get a "RECORD OVERFLOW" error in response
as there is now only one string item in the record. The system pads out a
logical record with fill items when it finds that the data being written to
the record has fewer bytes in it than were in the record to start with.

In the second record, starting at displacement hex 13, you'll find the SOR
byte followed by a marking byte defining a string of 6 bytes. Counting down
to the 7th byte from that marking byte, you'll find a marking byte defining a
single precision numeric value. Five bytes further on you'll come across a
marking byte defining another 6 byte long string. Seven bytes down from that
byte is a marking byte defining an integer. The third byte beyond that is a
double precision number marking byte. Nine bytes from there is the marking
byte for the last item in the record, a hex 8A, defining a 10 byte long
string. The remainder of the record following the string to displacement hex
AB is filled with fill bytes. If it became necessary to replace record 2 with
totally new data, the new record could take as many as 133 bytes, SOR byte
included. All that is there right now would be replaced if the proper fp's
were used.

The remainder of the record should be quite self-explanatory. The only
differences between its first contents and now are the double precision
number at displacement hex A2, and the new fourth record starting at AB and
having its last byte at C5.

This discussion doesn't show all that can be done with MU files, of course.
It is intended to show many of the abilities built into NEWDOS/80 BASIC file
support. For those of you with data base experience, the partial-record I/O
should look somewhat familiar. It is, after all, one of many data base
abilities to update a single field in a record. Granted, NEWDOS/80 doesn't
have the built-in file item security that data bases have; that is something
you'll have to build into your systems as you see fit. But for now, you'll
have to agree that NEWDOS/80's abilities are far superior to anything else
available on the market.

APPENDIX AA-29

For those of you getting into file processing for the first time, don't be
daunted by the apparent complexities of the methods available to you. The
best thing that you can do is to continue on with exercises similar to what
we've just done here. As you practice, the concepts will seem to become
easier to understand and work with.

APPENDIX A A-30

MF FILES

Now that you've experimented with the MU file type and feel somewhat more
comfortable with some of NEWDOS/80's capabilities, we'll go on now to
experiment a little bit with the MF file type. Returning to chapter 8 you'll
find that an MF file type is made up of marked items, and is record-segmented
with all records having the same length. In other words, it is a marked item,
fixed length record file. The length of the record is defined to the system
by the lrec1 operand of the OPEN statement.

Like the MU file type the MF file type can be updated with new data items on
a record by record basis. The updating data need not be the same data type or
length as the original data, nor does there have to be the same number of
items in the updated record as there were to start with. You must be mindful
of the file position being used during the updating of an MF file, just as
you were with the MU file. The update can start in the middle of the record
just as easily as at the beginning; the same fp controls are available to you
for MF files as there were for MU files. Don't lose sight of the fact that
when updating marked item files, all bytes from the current file position to
the end of the record are re-written, whether you had really intended that to
happen or not.

We'll use the same technique to experiment with the MF file as we used for
the MU file. First we'll have to create a file for use as the experimental
base. Enter the following BASIC program, and save it in case you need it
again later.

10 OPEN "0", 1, "MF/DAT", MF", 20
20 PUT 1,,,"STRING1", "STR 2", "STR3";
30 PUT 1 "MAXIMUM STRING (19)";
40 I!=4 : I#=8 : I%=2
50 PUT 1,,,I#,I!,I%;
60 PUT 1,,,I#*10,I!*100,I%*1000;
70 CLOSE

Now run the program to create the file. When its done, run SUPERZAP using DFS
to display sector 0 of the file just created. The first thing you'll notice
is that there is no SOR byte at the beginning of the sector. That's because
only MU files use them to define the start of records which are all presumed
to have different lengths; other record-segmented file types have fixed
length records so the system "knows" where each record begins. In the first
byte is a marking byte describing a 7 byte long string. At displacement 8 is
the marking byte describing a 5 byte long string, and at displacement E one
describing a 4 byte string. Progressing down to displacement 13, where the
next marking byte should be, you'll find a padding byte (00 hex). Remember
that the records in the file we created are 20 (14 hex) bytes long. We wrote
3 items of 7, 5 and 4 bytes length respectively giving an aggregate byte
count of 19; one fill byte is used to complete the 20 byte record.

The second record starts at displacement 14, where you'll find a marking byte
describing a 19 (13 hex) byte long string. The one item is the entire record.
The third record starts in displacement 28. You'll find marking bytes located
at 28, 31 and 36 describing a double precision item, a single precision item
and an integer respectively. This record has an aggregate data length of 17
bytes, and thus requires 3 padding bytes, which you'1l find in displacements

APPENDIX AA-31

39 through 3B inclusive. The fourth and last record we wrote has a data
structure identical to that of the third record. Its marking bytes are
located at displacements 3C, 45 and 4A; its padding bytes are in
displacements 4D through 4F. The data beyond 4F is unpredictable. It is in
fact whatever was in the sector before we created the file.

Return to BASIC and retrieve the location displaying program originally used
when experimenting with MU files. It should read:

10 PRINT LOC(1)$; "$ EOF TEST "; LOC(1)%; "% EOF RBA"
20 PRINT LOC(1)!, "! NEXT RCD RBA ";
30 IF LOC(1)!=0 PRINT ELSE PRINT LOC(1)#; "# REMRA"

We'll use this program in the same way we did fox the MU file experiments to
show the results of GETS and PUTS on file position. The experiments we'll go
through won't be as thorough as the ones done for the MU file. Instead
they'll touch on the major differences between the two file types.

To start with, we'll open the file and examine the results of the LOC
statements. Type in:

OPEN "I", 1, "MF/DAT", "MF", 20 : GOTO 10

The system will respond with:

0 $ EOF TEST 80 % EOF RBA
0 ! NEXT RCD RBA

Except for the EOF RBA, the results are the same as for the MU file. The
system is ready to process the record starting at displacement 0, the first
logical record.

Now type this in:

GET 1,,,,A$,B$; : PRINT A$, B$: GOTO 10

The system will respond with:

STR 2 STR3
0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

Notice that the last two items of the record were transferred. This is due to
the null where the first variable name would normally reside (after the third
comma).

From the current file position we can go back and transfer again the first
two items of the record by using REMRA positioning. Type in:

APPENDIX A A-32

GET 1,#,,A$,B$; : PRINT A$,B$: GOTO 10

The system will respond with:

STRING1 STR 2
0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

Nothing overly tricky there. As with MU files, we can continue processing the
same record.

To do just that, type in:

GET 1,*,,C$; : PRINT C$: GOTO 10

The system will respond with:

STR3
0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

The fp "*" value tells the system to continue processing from where it left
off on the preceding GET or PUT; in other words, from the current file
position. If the GET had asked for two or more items, record overflow error
would have occurred as the record, at that point, contained only one more
item.

Now let's try processing the fourth logical record without first processing
the second or third. Type in:

GET 1,!(4-1)*20,,J,K,L; : PRINT J; K; L : GOTO 10

The system will respond with:

80 400 2000
-1 $ EOF TEST 100 % EOF RBA
100 ! NEXT RCD RBA 80 # REMRA

Notice that the expression used in the !rba type fp specifies a value equal
to 60. The numbers themselves represent the logical record number we really
wanted, minus 1, times the record length. !rba positioning in a MF file, or a
FF file too, is quite simple, as you can see. Just as something for you to do
on your own, try the same statement as you just entered, using the rn form of
fp instead of the !RBA form.

To do this, you should have changed the PUT statement to be:

GET 1,4,,J,k,l;

Now let's try some simple random updates to the records and check the
results. Prepare the file for this by typing in:

CLOSE : OPEN "R", 1, "MF/DAT", "MF", 20 : GOTO 10

APPENDIX AA-33

The system will respond with:

0 $ EOF TEST 80 % EOF RBA
0 ! NEXT RCD RBA

Those are exactly the same results as when we opened the file for input.
Again, no big surprise there.

As a starting point, let's replace the first record. Type in:

PUT 1,,,I$; : GOTO 10

The system will respond with:

0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

The responses show that the first logical record has been processed. You
should be aware that even though the next record RBA shows a value of 20, the
current file position is in fact equal to 1 as the above PUT replaced the
entire contents of the record with a null string (an 80H marker byte only)
and 19 bytes of zeroes, then repositioned the file back to the byte following
the null string. If we were to write to the current file position using fp =
*, the PUT's first marking byte would be placed in the second byte of the
file.

Just for fun, let's add two fields to the record we just updated. Type in:

PUT 1,*,,"2",2; : GOTO 10

The system will respond:

0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

We'll see the results of this last update in a moment.

Now, let's add two more records to the end of the file. Type in:

PUT 1,!%,,"RCD 5"; : PUT 1,,,"RECORD 6"; : GOTO 10

The system will respond with:

-1 $ EOF TEST 120 % EOF RBA
120 ! NEXT RCD RBA 100 # REMRA

The numbers indicate that the file is now six records long.

Close the file now, and enter the SUPERZAP program; use the DFS function to
display sector zero of the file again. The records in the file begin at
displacements 0, 14, 28, 3C, 50 and 64 respectively. The marking byte at
displacement 0 describes a null string; the one at 1 a string 1 byte long and
the one at 3 an integer. Notice that the remainder of the record has been
padded with fill (00 hex) characters. The contents of the fifth and sixth

APPENDIX A A-34

records should need no explanation. You should notice that the data beyond
the sixth record was not modified by our little updating session. The system
ignores this area of the sector as it is file space at and beyond the file's
EOF and therefore not really part of the file.

As short as this session was in comparison to the one for MU files, you
should now be aware that MF files are not at all hard to manage. Depending
upon your own leanings, an individual record can be retrieved for update by
either lrba positioning as shown in the example, or by using the record
number itself On fp positioning).

APPENDIX AA-35

MI FILES

Now we come to the last of the marked item files - the MI file type. Its most
important differences from the MU and MF file types are:

1. MI files cannot be updated.
2. MI files have no system-recognizable record lengths.

These differences restrict this file type to being used for compact reference
file only, as they can only be written to or extended, and later read again.
Also, to get to any specific data group or item in a random-access fashion,
!rba positioning (or its logical equivalents) must be employed.

Because you've seen marked item files in some detail by now, the experimental
files accesses we've employed to this point will be quite limited and
intended to amplify the differences in structure and access methods rather
than similarities.

To start with, retrieve the program we used to create the MF file and change
it to read as follows:

10 OPEN "O", 1, "MI/DAT", "MI"
20 PUT 1,,,"STRING1","STR 2","STR3";
30 PUT 1,,,"MAXIMUM STRING (19)";
40 I!=4 : I#=8 : I%=2
50 PUT 1,,,I#,I!,I%;
60 PUT 1,,,I#*10,I!*100,I%*1000;
70 CLOSE

Note that only line 10 of the program is changed from the MF file example.

Save the program if you wish, and run it. A user-segmented file will be
created containing some 73 bytes of rather unlikely-looking data. Now exit
BASIC and enter SUPERZAP, and use the DFS function to display sector zero of
the file just created.

You'll see that there aren't any SOR marking bytes or padding items in the
sector. There aren't any records in so far as BASIC is concerned, just a
string of data items. The data in the file and its structure and organization
are entirely the responsibility of the programmer. All you'll see in the
sector is a series of contiguous marked data items. Good data design on the
programmer's part demands that there be some rational, coherent data
structure for the data items to be at all usable.

All there is in the file we created is unrelated data items. To access them
sequentially would require the intimate knowledge we have: there are four
strings and six numeric items. To access them randomly requires that we know
the specific RBAs of the marking bytes. Otherwise at best, a "BAD FILE DATA"
error will be raised by the system; at worst, it will return incoherent data.

Now, let's examine the SUPERZAP dump of the sector. The string marking bytes
occur at displacements 0, 8, E and 13. The first set of numeric items have
their marking bytes at 27, 30 and 35; the second set at 38, 41 and 46. We'll
use these numbers (displacements, all in hex) in just a moment to access the
data. By the way, the EOF RBA is 49.

APPENDIX A A-36

Return to DOS BASIC at this time, and load the same location printing program
as you used for MU and MF files. This program will aid in showing the lack of
logical record support afforded to MI files by the system.

As usual, the file must be opened for access. Type in:

OPEN "I", 1, "MI/DAT", "MI" : GOTO 10

The system will respond with:

0 $ EOF TEST 73 % EOF RBA
0 ! NEXT RCD RBA

As with other file types, the input mode open positions the system so that
the next byte to be processed is the first byte in the file, if a (null) fp
is used.

To show a different positioning resulting from open, and to extend the files
besides, type in:

CLOSE : OPEN "E", 1, "MI/DAT", "MI" : GOTO 10

The system will respond with:

-1 $ EOF TEST 73 % EOF RBA
73 ! NEXT RCD RBA
BAD FILE MODE IN 30

This last message is due to the fact that the location printing program tries
to print the REMRA value when it has just been marked invalid by the system
as a result of the open itself. (The location printing program tries to
display REMRA because the next record RBA is non-zero.)

The file is now in an output mode. To prove this we'll extend the file by
three integer items. Type in:

PUT 1,,,-1,-2,-3; : GOTO 10

The system will respond with:

-1 $ EOF TEST 82 % EOF RBA
82 ! NEXT RCD RBA 73 # REMRA

Notice that the EOF RBA is 9 bytes higher in the file, and that the REMRA has
the original EOF RBA value. In MI processing the REMRA is always set to the
same value as the REMBA; they both equal the file position at the beginning
of the GET or PUT data transfer.

APPENDIX AA-37

Now, let's go back and reference a few of the data items. Type in:

CLOSE : OPEN "R", 1, "MI/DAT", "MI"
GET 1,!19,,A$; : PRINT A$: GOTO 10

The system will respond with:

MAXIMUM STRING (19)
0 $ EOF TEST 82 % EOF RBA
39 ! NEXT RCD RBA 19 # REMRA

The REMRA reflects the starting RBA of the GET, and the next record RBA
points to the first of the numeric items. If no overriding fp were specified,
that is where the next GET would start examining items for transfer.

To show this, type in:

GET 1,,,,J%,K#,I!; : PRINT J%; K#; I! : GOTO 10

The system will respond:

4 2 80
0 $ EOF TEST 82 % EOF RBA
65 ! NEXT RCD RBA 39 # REMRA

Notice that once again all the items in the IGEL are of a different numeric
type than the file items being transferred to them. One of the marked item
file's intrinsic powers is this numeric type conversion.

To show that in an MI file the REMRA and REMBA are the same, we'll have to do
the same basic thing twice, with the appropriate fp characters. First type
in:

GET 1,#,,I,J,K; : PRINT I; J; K : GOTO 10

Then enter:

GET 1,$,,I,J,K; : PRINT I; J; K : GOTO 10

In both cases, the system will respond with:

8 4 2
0 $ EOF TEST 82 % EOF RBA
56 ! NEXT RCD RBA 39 # REMRA

Q.E.D. Don't lose sight of the fact that this REMRA equals REMBA relationship
is true at all times for field item, MI and FI files, and for MU, MF and FF
files only when the GET/PUT data transfer starts at the beginning of a
logical record.

Now, to show that an MI file can be extended after having been opened with
mode "R", type in:

APPENDIX A A-38

PUT 1,1%,,15,-15; : GOTO 10

The system will respond with:

-1 $ EOF TEST 88 % EOF RBA
88 ! NEXT RCD RBA 82 # REMRA

The EOF has been extended by 6 bytes as expected. The file is left positioned
to continue adding data to the end of the file if fp = (null) or * are
employed.

This about exhausts the experiments we can perform on MI files. On your own,
you can try to update a single existing item. (You'll get a "BAD FILE MODE"
error -- chapter 8 specifies that MI files cannot be updated.) If you are
unsure of what will happen if an MI file has been opened with some mode, and
a certain fp is specified in a GET/PUT, create the situation with a small
file from BASIC's calculator mode and try it - it's the surest way to find
out what does happen.

APPENDIX AA-39

FF FILES

The fixed item file is different from the marked item file in several
respects. To start with, it has no marking bytes for each item or record; all
item description is taken from the IGEL, not the file. Because of this, if
you describe a string item of 20 bytes to be read, that's exactly what will
happen, even if the data written to the file originally was numeric. Also, it
is required that numeric items written to file are read back as the same
type; otherwise file synchronization is lost.

A second major difference is that fixed item files can be updated using true
partial-record I/O. That is to say, a single field in a fixed item record may
be updated without affecting any surrounding fields, whereas, in a marked
item file, the field to be changed and all other fields to the end of the
record had to be written.

A third significant difference is that the expressions in the IGEL cannot be
anything more than variable names, with mandatory (len) prefixes for string
items. This is due to the indeterminate type/length of an item resulting from
an expression.

Fixed item files come in two types: FF files, in which all records have the
same length, and FI files which have no BASIC detectable records. For the
moment, we'll concern ourselves with only the FF type file.

As with the marked item discussions, we'll create an FF file, then experiment
with it in "calculator mode". Enter the following program and save it if you
wish. Then run it to create the FF file.

10 CLEAR 100
20 OPEN "O", 1, "FF/DAT", "FF", 20
30 PUT 1,%,40 : GOTO 50
40 (20)I$;
50 LSET I$="ABCDEFIJK"
60 PUT 1,,,(20)I$;
70 LSET I$="12345678901234567890"
80 PUT 1,,,(20)I$;
90 I%=2:I!=4:I#=8
100 PUT 1,,,(4)I$,I%,I!,I#;
110 I%=I%*10 : I!=I!*100 : I#=I#*1000
120 PUT 1,,,(4)I$,I%,I!,I#;
130 CLOSE

You will have noticed that this program is a little different than those used
for the marked item files. For one thing, the string items are written from
variables rather than literals in the IGEL proper. Additionally, no
expressions as such were used to place numeric data on the file. In assigning
values to the variable I$, LSET was used instead of the (implied) LET. This
latter was done to preserve the length of I$ set up in the pseudo FIELD
operation done in lines 30 and 40. This pseudo FIELD operation is not
required if your program can live with the fact that variables providing
string data to the file are NOT padded on the right while variables receiving
data from the file are padded. Note too that all string items in the IGELS

APPENDIX A A-40

have length prefixes. It's these prefixes that actually determine how many
bytes of string data are to be transferred to/from the file, not the pseudo
FIELD operation (refer to lines 100 and 120). Remember that the file string
items are padded or truncated on the right as necessary to meet the length
prefix's demands.

If we had elected NOT to use the pseudo FIELD function, the program could
have been written:

10 CLEAR 1000
20 OPEN "O", 1, "FF/DAT, "FF",20
50 I$="ABCDEFIJK"
60 PUT 1,,,(20)I$;
70 I$="12345678901234567890"
80 PUT 1,,,(20)I$;
and so on

Now run SUPERZAP, and use the DFS function to examine the sector just
written. You'll see that the first record (hex 11 bytes long) has the nine
data bytes we had intended to transfer padded to 20 bytes with 14 blanks (the
blank padding is due to the use of LSET in the first encoding above and due
to the PUT in the second). The second record has no padding - the string item
we wrote was twenty bytes long in the first place (had it been longer, the
LSET in the first encoding would have truncated the variable I$ on the right
and the PUT in the second would have truncated the file item). The third and
fourth records have identical formats: a four byte string, a two-byte integer
value, a four-byte single precision value, an eight-byte double-precision
value and two padding bytes. Again notice that there are no marking bytes to
describe the type of the file item. The file's EOF is at displacement 80 (hex
50). Any bytes in the sector at or beyond this displacement were unmodified
by the running of the program as those bytes are not part of the file.

Reload the program that was used to display the results of the LOC function
as was used in the MU file experiments - we'll use it once again to
demonstrate how file position is maintained.

To demonstrate the file's position after open, type in the following:

OPEN "I", 1, "FF/DAT", "FF", 20 : GOTO 10

The system will respond with:

0 $ EOF TEST 80 % EOF RBA
0 ! NEXT RCD RBA

As expected, the system is positioned to process the next (first) record on
the file.

To transfer the first record, type in:

GET 1,,,(20)A$; : PRINT LEN(A$); A$: GOTO 10

The system will respond with:

APPENDIX AA-41

20 ABCDEFIJK
0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

As you can see, 20 bytes were transferred to the variable named in the IGEL.
We could just as easily have transferred a part of the record if we had
wanted.

Just to show how this can be done, we'll assume that the record consists of 3
6-byte items and transfer them individually in separate GETS. Of course we'll
have to use some special fp values to accomplish this task. Type in:

GET 1,#,,(6)A$; : GET 1,*,,(6)B$; : GET 1,*,,(6)C$;
PRINT LEN(A$); A$: PRINT LEN(B$); B$: PRINT LEN(C$); C$: GOTO 10

The system will respond:

6 ABCDEF
6 IJK
6
0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

Here we've read 3 fields from the same record using as many GET statements to
do it. This shows one of the freedoms of partial record I/O.

Another of the freedoms available to you is the ability to skip over bytes in
a record to get to the ones you really want. We'll do that now with the
second record. Type in:

GET 1,,,(12)$,(4)A$; : PRINT LEN(A$); A$: GOTO 10

The system will respond with:

4 3456
0 $ EOF TEST 80 % EOF RBA
40 ! NEXT RCD RBA 20 # REMRA

The 12 bytes we skipped could just as easily have been 6 integers as a 12
byte ASCII string. The point being made is that the system neither knows nor
cares what data types or items are being skipped, only that Men) bytes are
being skipped.

Now we'll make a slight error in processing the fourth record - we'll forget
for a moment that was written with a 4-byte string at the start. Type in:

GET 1,4,,I%,I!,I#; : PRINT I%; I!; I# : GOTO 10

The system will respond with:

12849 0 0
-1 $ EOF TEST 80 % EOF RBA
80 ! NEXT RCD RBA 60 # REMRA

APPENDIX A A-42

Certainly not what we wrote! It does point out the need for consistent record
description within FF (and FI, for that matter) files. Unlike a marked item
file, in which this error would have been detected and reported, the fixed
item processing demands that whatever is at the current file position be
transferred to the named variable; no checks are done or can be done to
prevent this type of error. (The reason for the zero values showing in the
display for the single and double-precision numbers is that their exponent
bytes were zero).

You'll notice that we're now also positioned at EOF, or at least apparently
so. In fact the current file position, in so far as the system is concerned,
is the 15th byte of the record. The LOC(fan)! returns the RBA of the start of
the next sequential record to be processed; that is, the one which would be
processed with an fp = (null).

Just to show that we are positioned at the 15th byte, type in:

FOR I=1 TO 6 : GET 1,*,,(1)A$; : PRINT ASC(A$); : NEXT

The system will respond with:

0 0 122 141 0 0

A little decimal-to-hex conversion will show the non-zero values to be the
most significant mantissa byte and exponent byte respectively of the double
precision number originally written as record 4.

Now let's go back and process record 4 correctly. Type in:

GET 1,4,,(4)A$,I%,I!,I#; : PRINT I$;I%,I!,I# : GOTO 10

The system will respond with:

1234 20 400 8000
-1 $ EOF TEST 80 % EOF RBA
80 ! NEXT RCD RBA 60 # REMRA

Just like it was written in the first place. You've noticed, of course, that
the 4th record was processed using the rn form of the fp specification. When
developing indices to fixed-length record files (FF, MF and field item) a
couple of bytes can be saved by using integer items containing record numbers
for the indices instead of single precision items containing the RBA value
returned from some LOC function. Random access to a fixed-length record file
is just as reliable using rn positioning as using RBA positioning, and
perhaps a little easier to understand when examining an index item's
contents.

Now let's close the file and open it for some examples of updating. Type in:

CLOSE : OPEN "R", 1, "FF/DAT", "FF", 20 : GOTO 10

The system will respond with:

APPENDIX AA-43

0 $ EOF TEST 80 % EOF RBA
0 ! NEXT RCD RBA

What we'll concentrate on is partial-record I/O. It's in this area that the
fixed item files really have it over marked item files. Let's assume that the
first and second records in our file have the same format: 4 5-byte long
items each. Now let's update the 2nd item in the 1st record, and the last in
the 2nd record. Type in:

A$="2ND" : PUT 1,1,,((2-1)*5)$,(5)A$; : GOTO 10

The system will respond with:

0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

Now, to update the 2nd record, type in:

A$="LAST" : PUT 1,2,,((4-1)*5)#,(5)A$; : GOTO 10

The system will respond with:

0 $ EOF TEST 80 % EOF RBA
40 ! NEXT RCD RBA 20 # REMRA

You may have noticed that positioning to the field in the record was done by
computing the number of bytes to be skipped. In the 2nd record, the
positioning to the last 5-byte field didn't simply skip over the preceding 15
bytes, but nulled them out in the process. We'll see the effects of this
later.

Now let's update the integer items in the 3rd and 4th records. Type in:

I%=-50 : PUT 1,3,,(4)$,I%; : PUT 1,4,,(4)$,I%;
GET 1,3,,(4)J$,J%,J!,J#; : PRINT J$,J%;J!;J# : GOTO 10

The system will respond with:

1234 -50 4 8
0 $ EOF TEST 80 % EOF RBA
60 ! NEXT RCD RBA 40 # REMRA

The first line of the response shows that our update affected only the one
field we wanted to mess with - the other fields in the record were not
modified. In MF and MU files having similar records (allowing for marking
bytes), the integer, single-precision and double-precision values would all
have had to be specified in the IGEL in order to have updated just the
integer. That statement isn't quite complete: the single and double-precision
numbers would have to have been read first to maintain the correct values;
also, they could have been written back individually using the various fp
values. Again, here in an FF file, we had only to skip over the bytes we
wanted to, and write the single field to be modified.

APPENDIX A A-44

While in the "R" mode, any NEWDOS/80 file may be extended. To show this
feature, type in:

PUT 1,6,,J%,J%,J%; : GOTO 10

The system will respond with:

-1 $ EOF TEST 100 % EOF RBA
100 ! NEXT RCD RBA 80 # REMRA

In this example we entirely skipped over the 5th record of the file. The
system, in order to maintain the necessary record orientation, created and
wrote a 5th record containing only nulls before writing the 6th record as we
specified.

Now close the file, run SUPERZAP, and use the DFS function as before to
examine the 1st sector of the file. You'll notice that the 2 string records
(numbers 1 and 2) have been updated as required, that the integer items in
the Ad and 4th records both read CEFF, that the 5th record (displacements
50-63 hex inclusive) is all nulls, and that the 6th record contains 3
repetitions of CEFF hex, followed by 14 nulls.

APPENDIX AA-45

FI FILES

We now come to the last of NEWDOS/80's unique file types: the FI file. Like
the MI type file, it is a user segmented file; and like the FF type file, it
is made of fixed items, rather than marked items. Unlike the MI type file,
the FI file can be updated. This attribute makes it a little more powerful in
its application than the MI type file.

As we have done with each file type up to this point, we'll create a file by
running a BASIC program, then experiment with that file from the BASIC calcu-
lator mode. To create the file, enter, save and run the following program.

10 OPEN "O", 1, "FI/DAT", "FI"
20 A$="1ST STRING" : B$="STR 2"
30 I%=2 : I!=4 : I#=8
40 PUT 1,,,(15)A$,(6)B$,I%,I!,I#;
50 I%=I%*-1000 : I!=I!*-100 : I#=I#*-10
60 PUT 1,,,(15)B$,(6)A$,I%,I!,I#;
70 CLOSE

The first thing you'll have noticed is that we never did a pseudo FIELD
operation Up = X) as we did for the FF type file. This is because it isn't
absolutely necessary. BASIC will allocate the strings on GETS as it needs to,
and the file support will pad/truncate. the string file items as needed to
make them fit the length specified by the IGEL item prefix.

The second thing to notice is that the PUTS both put out data groups having
identical formats: a 15-byte string, a 6-byte string, an integer, a single
precision value and a double precision value. In a larger file, such a
consistent data group format would make it eligible for an FF type file, as
all data groups would have the same length and structure.

Load the program used to print the LOC function results used in all previous
experiments, and type in:

OPEN "R", 1, "FI/DAT", "FI" : GOTO 10

The system will respond with:

0 $ EOF TEST 70 % EOF RBA
0 ! NEXT RCD RBA

As expected, the file is positioned so that the first GET or PUT will begin
processing at the first byte of the file if fp = (null) or * is specified.
This would be the case for all open modes except "E", which would position
the file to the EOF RBA.

Knowing the data structure of the two groups that we wrote makes it
reasonably easy to access the second group via RBA positioning. Type in:

GET 1,135,,(15)A1$,(6)A2$,I%,I!,I#;
PRINT A1$, A2$, I%; I1; I# : GOTO 10

APPENDIX A A-46

The system will respond with:

STR 1ST ST -2000 -400 -80
-1 $ EOF TEST 70 % EOF RBA
70 ! NEXT RCD RBA 35 # REMRA

By processing all the data in the second data item group, the file is
positioned at EOF as the LOC(fan)$ shows.

FI files can be extended in the same manner as FI files. Let's do just that,
and leave an area of 10 bytes between the current file position and the new
data. Type in:

L=LOC(1)! : J=EXP(1) : PUT 1,,,(10)#,J; : GOTO 10

The system will respond with:

-1 $ EOF TEST 84 % EOF RBA
84 ! NEXT RCD RBA 70 # REMRA

The variable L contains the file location of the 10 padding bytes we wrote.
We'll use that in a minute. Notice that in the PUT statement, the variable J
was not suffixed by a type character. J has the default type of single
precision floating point and 4 bytes were written into the file. Though using
explicit type suffix characters in IGELs is not required as it was for
NEWDOS/80 version 1, it is highly recommended that you do so.

Now, let's go back and put something in that padding area we just wrote.
We'll use RBA positioning again to get to that area of the file. Type in:

A$="ABCDEFG" : PUT 1, ! L, , (4) A$, L! ; : GOTO 10

The system will respond with:

0 $ EOF TEST 84 % EOF RBA
78 ! NEXT RCD RBA 70 # REMRA

Pay special attention to the spacing on that last PUT statement. It shows the
freedom you're allowed when entering a program. Depending on your own
leanings, the spacing may or may not make the program more readable. Feel
free to use spacing or not as you see fit.

Now let's go back and read some of the data we've written to the file. Type
in:

GET 1,158,,I!,I#,(4)B$,K!;
PRINT I!; I#; B$; K! : GOTO 10

The system will respond with:

APPENDIX AA-47

-400 -80 ABCD 70
0 $ EOF TEST 84 % EOF RBA
78 ! NEXT RCD RBA 58 # REMRA

We read the data with the proper data types for what was located at the
starting file position, so the results of the PRINT are normal. Needless to
say, if we were off by even 1 byte in our positioning the results would have
been rather different.

To show the disaster which could befall the unwary programmer, lets
malposition the file and repeat the last transfer. Type in:

GET 1,157,,I!,I#,(4)B$,K!;
PRINT I!; I#; B$; K! : GOTO 10

The system will respond with:

2.36125E+21 2147483648.000008 xABC 6.01858E-36
0 $ EOF TEST 88 % EOF RBA
77 ! NEXT RCD RBA 57 # REMRA

Nasty, isn't it? But the system did just what we told it to do - because it's
an FI type file, it couldn't protect us from ourselves.

If you've gotten this far, you should have a fair idea of how to manipulate
marked item and fixed item files. As the support for TRSDOS BASIC's field
item files and print/input files has not changed in NEWDOS/80, excepting for
allowing field item files to have a standard record length of other than 256,
no experiments were provided here to familiarize you with them. If you
haven't done so lately, go back and read chapter 8. You'll see that indeed
the support for the old TRSDOS file types has been extended. With the
experience you've received here, you'll be able to generate your own
experiments for those extensions. Good luck to you!

APPENDIX BB-1

APPENDIX B

The purpose of this appendix is to give some examples of marked item and
fixed item file usage and to give different explanations than were offered in
chapter 8 and Appendix A. Chapter 8 contains the specifications for the I/O
enhancements to BASIC. This appendix hopes to give enlightenment but is not
the specifications; chapter 8 is!!!

Throughout this appendix (as well as the whole manual) we shall refer to the
file types by their short names. The reader should refer now to the glossary
in chapter 10 for the definitions of MI file, MU file, MF file, FI file and
FF file. This appendix will also refer to other terms such as IGEL, RBA,
REMRA, REMBA, etc. which are defined in the glossary or in chapter 8.

Most of the examples given in this appendix deal with MU files and FF files
since these two types will be the most commonly used by the programmers.

We have tried to make the examples as much alike as possible or practical to
make it easier for the reader to spot the differences.

Since we are basically interested in demonstrating the use of the files (an
exception is the demonstration of the uses of CMD"O", BASIC's in-memory
sort), we do not provide the routines which actually use or generate the data
to be read from or sent to the files. The programmer is assumed to provide
these routines if he/she wishes to use these examples in live situations.

In all these examples, each named variable corresponding to a file item is
suffixed with an explicit type symbol ($, %, 1 or #) (See line 120 of Example
3). This is done so that the reader will know exactly what type of data is
being read from or written to the file. We STRONGLY recommend that in your
own IGELs that you do the same; otherwise it is quite possible that you can
severely damage a file by the implied type not being as you thought you
remembered it. Use of explicit type symbols was required in version 1 for
IGELs used in fixed item file processing, but that is not so in version 2. An
example of an IGEL that does not use explicit type symbols is to change two
lines in Example 7 to be:

10 CLEAR 2000: DEFSTR N,S: DEFINT A,I: DEFSNG F: DEFDBL D
120 (20)NM,AN,AM!,DT,(15)ST,IG,FP,DP;

Remember, we STRONGLY recommend the suffixing of type symbols to the variable
names in IGELs.

The operation of a GET or a PUT proceeds in two phases:

1. The file positioning phase. In this phase, the file is positioned
according to the second parameter, the file positioning parameter, of
the GET or PUT statement. At the end of this phase, for certain types
of positioning parameters, the file location values REMRA and REMBA are
saved for possible future use when the subsequent positioning parameter
for that filearea is # or $ (see section 8.10).

2. The data transfer phase. In this phase, data is transferred between
the file and the variables named in the IGEL.

APPENDIX B B-2

Example 1. Write records sequentially to a MU file.

MU files are intended as an alternative to print/input files. AMU file tends
to use less disk space than a print/input file, can be updated with some
restrictions, can be indexed into via the !rba positioning parameter, and
does not need the ;","; character sequence to separate strings during writes
to the file.

10 CLEAR 2000
20 OPEN "O",1,"XXX/DAT:1","MU"
30 GOSUB 10000 'build data for record
40 IF RN% = 0 THEN CLOSE: END 'end of run
50 PUT 1,,,NM$,AN%,AM!,DT#,ST$,IG%,FP!,DP#;
60 GOTO 30

The file is opened for sequential output of records whose individual lengths
vary depending upon the size of the two strings contained in each record.

The file positioning parameter in the PUT statement is null, indicating that
each execution of that PUT writes the next sequential record.

The programmer supplies the routine at 10000 to generate the data for the
records. If no more records are to be created, set RN% = 0. Otherwise set RN%
not 0 and put into the 8 variables NM$, AN%, AM!, DT#, ST$, IG%, FP! and DP#
the data that is to be transmitted to the file.

The IGEL in this example is contained within the PUT statement and consists
of 8 expressions (in this case, all named variables). The variable or
expression associated with each record item is separated from its neighbor by
a comma. The IGEL is terminated by a semicolon.

The full contents of each of the strings NM$ and ST$ is sent to the file,
with each preceded by one or two string marker bytes. The second marker byte
is used for strings 128 to 255 characters in length.

Each of the integers AN% and IG% is represented in the file as 3 bytes, a 72H
marker byte followed by the 2 bytes of the binary integer value in the same
format as used by BASIC.

Each of the single precision floating point numbers AM! and FP! is
represented in the file as 5 bytes, a 73H marker byte followed by the 4 byte
binary single precision floating point value in the same format as used by
BASIC.

Each of the double precision floating point numbers DT# and DP# is
represented in the file as 9 bytes, a 74H marker byte followed by the 8 byte
binary double precision floating point value in the same format as used by
BASIC.

Using the IGEL in the PUT statement to compute the minimum and maximum record
lengths, the minimum length of a record in this file will be 37 bytes (both
strings are null and including the SOR byte) and the maximum length of a
record will be 549 bytes (both strings have 255 characters).

APPENDIX BB-3

Example 2. Read records sequentially from a MU file.

10 CLEAR 2000
20 OPEN "I",1,"XXX/DAT:1","MU"
30 IF EOF (1) THEN END
40 GET 1,,,NM$,AN%,AM!,DT#,ST$,IG%,FP!,DP#;
50 GOSUB 10000 'process the record's data
60 GOTO 30

This example is the opposite of Example 1, using the same IGEL and named
variables. The data records of the file are successively read and processed.
The programmer supplies the routine at 10000 to do what he/she wishes with
the data.

The file positioning parameter in the GET statement is null, meaning that
each execution of that GET reads the next sequential record in the file.'

The EOF(1) function returns a true condition when the file position of the
next record is exactly at file EOF.

Example 3. Sequentially read and update the records of a MU file.

10 CLEAR 2000
20 OPEN "R",1,"XXX/DAT:1","MU"
30 IF EOF(1) THEN END
40 GET 1,,120 'read the next sequential record
50 GOSUB 10000 'update the record's data
60 PUT 1,#,120 'rewrite the record back to the file
70 GOTO 30
120 NM$,AN%,AM!,DT#,ST$,IG%,FP!,DP#;

The same file created in Example 1 is used in this example. The file is
opened for both input and output operations. Records are read sequentially
from the file into the BASIC variables, zero or more of those variables are
updated by the programmer supplied routine at statement 10000. Upon return
from that routine, the record is written back to the file.

The file positioning parameter in the PUT statement is the character #. For
this example, at the start of each execution of that PUT statement, the file
is repositioned back to the start of the record read by the GET, causing the
PUT to update that record.

Both the GET and the PUT statement use the same IGEL which is located at text
line 120. This IGEL is identical to that used in examples 1 and 2 except that
instead of being contained within the GET or PUT statement, it is contained
in a separate text line with the GET and PUT statements containing that line
number as their third parameter.

An error will be declared if the PUT statement finds the new length of a
record exceeds the length originally assigned to that record during Example
1. This will only occur when the sum total of the file space used by the
record's string items exceeds that of what the strings originally occupied
plus any null space included in the original record (insertable using the
(lend function, see section 8.4.3.4). The numeric values may be updated

APPENDIX B B-4

without concern as they always occupy the same amount of file space. Thus, if
a string item is to be updated in a MU file, the string's resulting length
should not be increased; it can be, but be careful.

Example 4. Read in, sort in memory and write back out a MU file.

10 CLEAR 10000: DEFINT I
15 DIM NM$(200),AN%(200),AM!(200),DT#(200)
17 DIM ST$(200),IG%(200),FP!(200),DP#(200),IX%(200)
18 DIM IX%(200)
20 IX=0: OPEN "I",1,"XXX/DAT:1","MU"
30 IF EOF(1) THEN 80
40 IX=IX+1: IF IX > 200 THEN PRINT "TOO MANY RECORDS": END
50 GET 1,,60: GOTO 30
60 NM$(IX),AN%(IX),AM!(IX),DT#(IX), 'IGEL 1st line
70 ST$(IX),IG%(IX),FP!(IX),DP#(IX); 'IGEL last line
80 IF IX = 0 THEN PRINT "EMPTY FILE": END
90 CMD"O",IX,*IX%(1),AM!(1),NM$(1)
100 CLOSE: OPEN "O",1,"XXX/DAT:1","MU"
110 IY = IX: FOR IZ = 1 TO IY
120 IX = IX%(IZ): PUT 1,,60
130 NEXT IZ: CLOSE: END

The MU file XXX/DAT:1 of 1 to 200 records is read into 8 arrays.

The records are then indirectly sorted at line 90 using BASIC's array sort
using the IX% array as the integer indirect array. The sorting criteria is
ascending order, first by the AM! values and then by the NM$ values. During
the sort, the integer IX% array is set up to contain sequentially in the
sorted order the index values into the other arrays.

It should be noted that the sort changed nothing in the record arrays AM! and
NM$. The IX% array was initialized to point each successive element to
successive elements of the AM! array. As the sort proceeded, the elements in
the IX% array were moved around to conform to the sort order.

It should further be noted that though the file records span across 8 arrays,
the sort saw only the two of them (AM! and NM$) that provided the sort data.

After the sort the records of the file are written out in sorted order. Since
the same file was used to store the sorted records, the user must be sure to
preserve a backup copy of the original file in case an error occurs during
the output of the sorted records.

This example demonstrates that IGELs can contain array named variables and
that an IGEL may span multiple text lines (lines 60 and 70).

APPENDIX BB-5

Example 5. Write records sequentially to a FF file.

FF files are intended as an alternative to field item files (TRSDOS random
files). The FIELD statement is not used with FF files; though the user may
wish to use the pseudo FIELD function specified in section 8.11. LSET and
RSET are not used in FF file processing to set up the variables making up the
record, though if the user has set the strings to the specified lengths via
the pseudo FIELD function, he/she may wish to use LSET or RSET to maintain a
string variable at that length. LSET and RSET must never be used for numeric
variables. For FF files, MKD$, MKI$, MKS$, CVD, CVI and CVS are not used.

Each string variable in the IGEL must be prefixed with the length the string
item will have in the file, and regardless of the number of characters in the
variable's string at the time of the PUT, the corresponding string in the
file will be truncated on the right or padded on the right with spaces to
make up the required number of characters. During the PUT, the string
variable is NOT changed; only the file item is.

10 CLEAR 2000
20 OPEN "O",1,"XXX/DAT:1","FF",63
30 GOSUB 10000 'build data for record
40 IF RN% = 0 THEN CLOSE: END 'all done
50 PUT 1,,,(20)NM$,AN%,AM!,DT#,(15)ST$,IG%,FP!,DP#;
60 GOTO 30

The file is opened for sequential output of records each 63 bytes long.

The file positioning parameter in the PUT statement is null, indicating that
each execution of that PUT writes the next sequential record.

The programmer supplies the routine at 10000 to generate the data fox the
records. If no more records are to be generated, set RN% = 0. Otherwise set
RN% non-zero and load the 8 variables NM$, AN%, AM!, DT#, ST$, IG%, FP! and
DP# with the data that is to be transmitted to the file.

The IGEL is contained within the PUT statement and consists of 8 named
variables. The name variable associated with each record item separated from
its neighbor by a comma. The IGEL is terminated by a semicolon.

Each of the strings NM$ and ST$ is represented in the file by the number of
characters specified by the variable's prefix in the IGEL. For each PUT
executed by this example, the current contents of NM$ are sent to the file.
If the NM$ string has more than 20 characters, the excess characters on the
right are dropped from the file item, not from NM$. If the NM$ string has
less than 20 characters, the file item, not NM$, is padded on the right with
spaces to make the file item 20 characters long. The same concept holds in
restricting to 15 characters the file item associated with the ST$ string.

Each of the integers AN% and IG% is represented in the file by 2 bytes in the
same format as used by BASIC.

Each of the single precision floating point numbers AM! and DF! is
represented in the file by 4 bytes in the same format as used by BASIC.

APPENDIX B B-6

Each of the double precision floating point numbers DT# and DP# is
represented in the file by 8 bytes in the same format as used by BASIC.

Example 6. Read records sequentially from a FF file.

10 CLEAR 2000
20 OPEN "I",1,"XXX/DAT:1","FF",63
30 IF EOF(1) THEN END
40 GET 1,,,(20)NM$,AN%,AM!,DT#,(15)ST$,IG%,FP!,DP#;
50 GOSUB 10000 'process the record's data
60 GOTO 30

This example is the opposite of Example 5, using the same IGEL and named
variables. The data records of the file are successively read and processed.
The programmer supplies the routine at 10000 to process the data.

The file positioning parameter in the GET statement is null, meaning that
each execution of that GET reads the next sequential record in the file.

After each record read, AM$ contains a 20 character string and ST$ contains a
15 character string.

Example 7. Sequentially read and update the records of a FF file.

10 CLEAR 2000
20 OPEN "R",1,"XXX/DAT:1","FF",63
30 IF EOF(1) THEN END
40 GET 1,,120 'read the next sequential record
50 GOSUB 10000 'update the record's data
60 PUT 1,#,120 'rewrite the record back to the file
70 GOTO 30
120 (20)NM$,AN%,AM!,DT#,(15)ST$,IG%,FP!,DP#;

The same file created in Example 5 is used here. The file is opened for both
input and output operations. Records are read sequentially from the file into
the BASIC variables, zero or more of those variables are updated by the
programmer supplied routine at statement 10000. Upon return from that
routine, the record is written back to the file.

The file positioning parameter for the PUT statement is the character A At
the start of each execution of the PUT in this example, the file was
repositioned back to the start of the file record read by the GET (in more
complicated words, to the REMRA), thus causing the PUT to write that record.

Both the GET and the PUT use the IGEL starting at line 120.

After each GET, NM$ contains a 20 character string and ST$ contains a 15
character string. During the programmer supplied processing, the lengths of
one or both of the strings may change. During the PUT, the file item
corresponding to AM$ is set again to a length of 20 characters, with space
padding or truncation taking place on the right as necessary. The same

APPENDIX BB-7

concept applies to the 15 character file item corresponding to ST$. Remember,
AM$ and ST$ are not changed by the PUT.

Example 8. Randomly read and optionally update the records of a FF file.

10 CLEAR 2000
20 OPEN "D",1,"XXX/DAT:1","FF",63
30 GOSUB 10000 'determine which record to read
40 IF RN% = 0 THEN END 'end if no more
50 GET 1,RN%,120 'read that record
60 GOSUB 15000 'optionally update the record's data
70 IF RN% <> 0 THEN PUT 1,RN%,120 'if required, write the record
80 GOTO 30
120 (20)NM$,AN%,AM!,DT#,(15)ST$,IG%,FP!,DP#;

This example is similar to Example 7 excepting that the record reads are done
randomly and the programmer can elect not to update the record.

The file created in Example 5 is used here. For each record, the processing
is as follows:

The programmer supplied routine at line 10000 determines which file
record is to be looked at next. On return, RN% contains the desired
record number; if RN% = 0, the run is ended.

The record is read, using RN% as the file positioning parameter to
specify which record is wanted.

The programmer supplied routine at line 15000 looks at the record's
data and optionally changes 1 or more variables associated with the
record. On exit from the routine, RN% is set to zero if the record is
not to be updated; otherwise RN% is unchanged.

If RN% is not zero, the record is rewritten to the file using RN% as
the file positioning parameter. Note, the file positioning parameter
for the PUT could have been the character

Note the use of "D" rather than "R" as the 1st parameter in the OPEN
statement. "R" could have been used, but "D" prevents the file from being
extended if for some reason RN% was changed before the PUT statement to be a
record number beyond the range of the file.

Example 9. Sequentially write records to a MU file and sequentially write
records to a FF file that serve as an index into the MU file.

There are many cases where the user has a huge file with each record having
strings of varying lengths, does not want the string padding or truncation
that is done by field item or fixed item files and yet still wants to be able
to randomly access the file, and to a limited extent be able to update that
file. Using a MU file as the main file and an FF file as an index file, the
user can achieve these objectives.

APPENDIX B B-8

10 CLEAR 2000
20 DIM AN%(4000),RB!(4000) 'two arrays to hold index data
30 OPEN "O",1,"XXX/DATA","MU" 'open the main data file
40 RC% = 0
50 GOSUB 10000 'create next record's data
60 IF RN% = 0 THEN 105 'done with main file
70 RC%=RC%+1: IF RC% > 4000 THEN PRINT "FILE T00 LARGE": GOTO 105
80 RB!(RC%) = LOC(1)! 'save RBA of next record
90 PUT 1,,,NM$,AN%(RC%),AM!,DT#,ST$,IG%,FP!,DP#;
100 GOTO 50
105 CLOSE
110 IF RC% = 0 THEN PRINT "NO DATA RECORDS": END
120 CMD"O",RC%,AN%(1),RB!(1) 'sort index data
130 OPEN "O",1,"XXX/NDX:1","FF",6 'open index file
140 FOR X = 1 TO RC%
150 PUT 1,,,AN%(X),RB!(X); 'write index record
160 NEXT X: CLOSE: END

This example could have been programmed to write alternately one record to
each of the two files. However, since both are on the same drive, the drive
arm would be constantly in motion and execution would take, or at least seem
to take, forever. Therefore, the index file's data is stored into arrays to
be written out after the main file has been completely written.

For this example the AN% array is assumed to hold account numbers and for
each main data file record, the account number is unique.

The program proceeds as follows:

For each main data file record:
The programmer supplied routine at 10000 set RN% = 0 if no more
main data file records are to be created. Otherwise it sets RN%
non-zero and creates the record's data by storing the values in
the proper variables, including the account number into its
array.

The RBA of where that record is to be placed in the main data
file is determined by the line 80 LOC(1)1 function and is stored
into the RBA array RBI.

The record is written to the main data file.

The two arrays AN% and RBI are directly sorted. Since this is a direct
sort, both arrays are physically arranged in the sort order, which is
in ascending order of account number. Note, though ascending order of
RBA is the secondary sort criteria, since the account numbers are
unique, the RBA values are never checked.

APPENDIX BB-9

The index file is created by writing the index records sequentially
from the arrays, which are in ascending order of account number.

Exactly the same results would have been attained had text lines 80 and 9
above been written as:

80 PUT 1,,,NM$,AN%(RC%),AM!,DT#,ST$,IG%,FP!,DP#;
90 RB! = LOC(1)# 'RBA where the record was placed

Example 10. Randomly read and optionally update the records of an indexed MU
file.

10 CLEAR 2000
20 DIM AN%(4000),RB!(4000)
30 RC% = 0: OPEN "I",1,"XXX/NDX:1","FF",6 'open index file
50 IF EOF(1) THEN 100
60 RC% = RC% + 1
70 IF RC% > 4000 THEN PRINT "INDEX TOO LARGE": END
80 GET 1,,,AN%(RC%),RB!(RC%); 'read index data into arrays
90 GOTO 50
100 CLOSE: IF RC% = 0 THEN PRINT "NO ACCOUNTS": END
110 OPEN "D",1,"XXX/DATA","MU" 'open main data file
120 GOSUB 10000 'determine which account record wanted
130 IF RN% = 0 THEN END 'if req, end the run
140 FOR X = 1 TO RC%
150 IF RN% = AN%(X) THEN 170 '.search index for account #r match
160 NEXT X: PRINT "BAD ACCOUNT NUMBER": GOTO 120
170 GET 1,!RB!(X),300 'read the account record
180 IF AN% <> RN% THEN PRINT "BAD DATA FILE": END
185 GOSUB 15000 'display data, receive back updates
190 IF RN% <> 0 THEN PUT 1,#,300 'if required, re-write record
200 GOTO 120
300 NM$,AN%,AM!,DT#,ST$,IG%,FP!,DP#;

It is assumed that you, the programmer, have an application that is basically
data retrieval for display to the terminal operator and in some cases, update
information is received from the terminal operator to alter information
already in the main data file.

The two files created in Example 9 are used in this example. The index file
is opened first and its contents read into the two arrays AN% and RB!

For each record, the processing is as follows:

The programmer supplied routine at 10000 queries the terminal operator
to determine the account number. On return from that routine RN%
contains the account number; if zero, the run is to end.

The account number array AN% is searched for the matching account
number. If not found, an error message is displayed.

The account record is read from the main data file, using the account
record's RBA value from the RB! array as the file positioning

APPENDIX B B-10

parameter. RN% is then compared against the AN% value from the file and
if not equal, an error message is displayed and the run terminated.

The programmer supplied routine at 15000 displays the account data to
the terminal operator, and, if required, accepts back the new data for
the fields being updated. If the record is not to be updated, set RN% =
0.

On return, the record is re-written to the file if RN% is non-zero. The
PUT uses file positioning parameter # which repositions the file to the
start of the record (again, in other words, the # causes file
positioning to REMRA).

Example 11. Sequentially write different type records to a MU file.

A programmer's application may use different types of records. Normally, the
individual record types would be stored in different files, but if a record
of one type corresponds to one or more records of one or more other record
types the programmer may want to store all of these associated records
together in the file in order to minimize the time needed to access them. MU,
MI and FI files readily allow this mixing of record types whereas field item,
MF and FF files do so only if the records are all the same length.

An example of this mixture of record types might be an insurance account
which can have the account main record, one or more records of the
individuals covered by the account, one or more records of payments and one
or more records of claims, each of the 4 record types having different
formats.

In the example below, three different record types are used; the main record
and two subsidiary types. There is no correlation between these three record
types and anything in the real world; all we are trying to do is demonstrate
how a MU file can contain the multiple type records.

In the example below, each set of records consists of one type 1 record and a
mixture of zero or more type 2 and 3 records.

10 CLEAR 2000
20 OPEN "O",1,"XXX/DAT:1","MU"
30 GOSUB 10000 'create type 1 record's data
40 IF RN% = 0 THEN CLOSE: END 'all done
50 PUT 1,,,"1",NM$,AN%,AM!,DT#,ST$,IG%,FP!,DP#; 'write type 1 record
60 GOSUB 11000 'create type 2 or 3 record's data
65 IF X$ <> "2" THEN 90
70 PUT 1,,,"2",SA$,SB$,LN$,PD!; 'if type 2 record, write it
80 GOTO 60
90 IF X$ <> "3" THEN 30
100 PUT 1,,,"3",SJ$,DF#,IP%,IA%,FG!; 'if type 3 record, write it
110 GOTO 60

The programmer supplied routine at 10000 sets RN% = 0 if no more records are
to be created. Otherwise it sets RN% non-zero and creates the type 1 record's
data. For each set of records, there is one and only one type 1 record.

APPENDIX BB-11

The programmer supplied routine at 11000 creates the type 2 or type 3
record's data, whichever comes next. On exit from that routine X$ contains
the record type flag or if neither "2" or "3", it indicates the end of the
series of records. The type 2 and type 3 records are intermixed on the file
following the associated type 1 record. For a given type 1 record, there need
not be any type 2 or 3 records.

Each PUT statement contains its own IGEL. Note, in each of these IGELs the
first entry is an expression rather than a named variable. It could have been
a named variable containing the record type character, but expressions were
used instead to demonstrate that the IGELs used for writing to marked item
files can contain expressions as well as named variables, hence the reason
why its called an IGEL (item group expression list) instead of an IGVL (item
group variable list).

Example 12. Sequentially read and optionally update records from a MU file
containing multiple record types.

The file created in Example 11 is used here. In this example we will
demonstrate the partial record read feature of marked item files (also
available for fixed item files). The first three, the 5th and 7th items of
the type 1 record will be read, type 2 records will be skipped, and type 3
records will be processed entirely, including optionally being updated.

10 CLEAR 2000
20 OPEN "D",1,"XXX/DATA","MU"
30 IF EOF(1) THEN END
40 GET 1,,,RT$; 'read record type character
50 IF RT$ <> "1" THEN PRINT "BAD RECORD TYPE": END
60 GET 1,*,,NM$,AN%,,DT#,,IG%; 'read selected type 1 record items
70 IF EOF(1) THEN END
80 GET 1,,,RT$; 'read next record type character
90 IF RT$="2" THEN 70 'bypass type 2 records
100 IF RT$ <> "3" THEN 50
110 GET 1,*,200 'read in rest of type 3 record
120 GOSUB 11000 'process type 3 record's data
130 IF RN% <> 0 THEN PUT 1,$,200 'if required, re-write type 3 record
140 GOTO 70
200 SJ$,DF#,IP%,IA%,FG!;

The GET statements at lines 40 and 80 read only one item of the next record,
and the file is left positioned at the 2nd item of the record. Both REMRA and
REMBA point to the record's 1st item.

The GET statements at lines 60 and 110 start where the line 40 or 80 GET left
off. The line 60 and 110 GETS do NOT advance to the next record before
inputting data. However, before inputting the data REMRA is set to point to
the positioning point which is the 2nd item of the record. Thus, if the line
130. PUT is executed, the PUT's reposition parameter will reposition the file
to REMBA which is pointing at the record's 2nd item. REMRA is not changed by
the line 60 or line 110 GET statements.

APPENDIX B B-12

The line 60 GET reads the 2nd, 3rd, 5th and 7th items of the type 1 record
and leaves the file positioned at the 8th item. The 4th and 6th items were
skipped, and the next execution of the line 80 GET will skip the remainder of
the type 1 record items (the 8th and 9th).

The remainder of the item in the type 2 records are skipped over by the next
execution of the line 80 GET.

The line 110 GET reads the rest of the type 3 record, the 2nd through 6th
items.

The programmer supplied routine at line 11000 does whatever processing is
needed for the type 3 record, using its data plus that extracted from the
type 1 record. If the type 3 record is to be updated, RN% is set non-zero;
otherwise it is set equal to 0.

On return for that routine, if RN% <> 0 the type 3 record is re-written to
the file. Note that only the 2nd through the last items were written back to
the file. The first item was not changed as the file positioning done for the
line 130 PUT was to the REMBA position which was the file position existing
during the line 110 GET immediately after its positioning was done and before
any items were inputted.

Remember that in updating a MF and MU record, once an item is written back to
that record, all items following it in the record must also be written back
if those items are to remain part of the record. It is not necessary they all
be written by the same PUT statement, but they must all be written; for each
PUT that updates only part of a MU file record fills with null bytes all of
the record's bytes, if any, following the last item written.

For record segmented files, EOF compares the location of next record against
the EOF. For the type 3 record processing above, the position where the line
130 PUT leaves off and the position of the next record are the same. For the
type 1 and 2 records, the GET statements left the file positioned to the 8th
and 2nd items respectively. In these cases, EOF computes the position of the
next record and uses that value in its compare against EOF.

Example 13. Sequentially write records to a MF file (marked item file of
fixed length records).

A programmer's application may require full update capability for a file that
contains strings. Since a MU file cannot guarantee record update success when
strings are being lengthened, the programmer must go to either field item
file, a FF file or lastly, a MF file. The relative merits of the field item
and the FF file have already been discussed, so we will concern ourselves
here only with the relative merits of the FF and MF files.

APPENDIX BB-13

The advantage of MF files is that string items are not padded with blanks to
fill out the item to the maximum length allowed it. Each string item is
written with the number of characters it needs, up to but not exceeding the
maximum length allowed it. Then, at the end of the record, if unused record
space exists, the record is filled out with null bytes which during the read
of a MF file, the program never sees. Though most of the time padding bytes
do not bother the programmer in comparing a string item from the file with
another string, there are times when it creates a real inconvenience compared
to the cost of the extra disk space involved.

The disadvantage of MF files over FF files is that MF files use more disk
space due to the inclusion of the item marker bytes. In this example, the
record size is 13% greater than the corresponding FF file in Example 5 though
both contain the same data, excepting that the MF file strings are not
padded.

10 CLEAR 2000
20 OPEN "O",1,"X-XX/DAT:1","MF",71
30 GOSUB 10000 'create data for record
40 IF RN% = 0 THEN CLOSE: END 'no more records
45 IF LOF(1) < RN% THEN PRINT "BAD RECORD #: GOTO 30
50 PUT 1,,,(20)NM$,AN%,AM!,DT#,(15)ST$,IG%,FP!,DP#; 'write record
60 GOTO 30

The file is opened for sequential output of records each 71 bytes long.
According to the IGEL at line 50, this 71 bytes allows for items of 21, 3, 5,
9, 16, 3, 5 and 9 bytes respectively (remember, each item starts with a
marker byte).

The programmer supplies the routine at line 10000 to set RN% = 0 if no more
records are to be created. Otherwise it sets RN% non-zero and loads the data
for the new record into the 8: variables NM$, AN%, AM!, DT#, ST$, IG%, FP!
and DP#.

The representation of the items on the disk is the same as described in
Example 1 for the MU file excepting that SOR items are not used and that both
string items are limited to a maximum number of characters, 20 for NM$ and 15
for ST$. If at the time the file item is written, either string variable has
a length greater than the maximum allowed for the file item, then the excess
characters on the right are not transmitted to the file item.

Strictly speaking, it is not a requirement that string expressions in the
IGEL used at line 50 above be prefixed with a maximum string length value.
The IGEL of Example 1, line 50 could have been used. However, by not
specifying a maximum string length value for any one string item, full update
capability cannot be guaranteed for the record.

Note the use of the LOF function at line 45 to check if the requested record
is within the file.

APPENDIX B B-14

Example 14. Randomly read and optionally update records of a MF file.

10 CLEAR 2000
20 OPEN "D",1,"XXX/DAT:1","MF",71
30 GOSUB 10000 'determine which record to read
40 IF RN% = 0 THEN CLOSE: END 'end if no more
50 GET 1,RN%,120 'read that record
60 GOSUB 15000 'optionally update the record's data variables
70 IF RN% <> 0 THEN PUT 1,#,120 'if required, rewrite the record
80 GOTO 30
120 (20)NM$,AN%,AM!,DT#,(15)ST$,IG%,FP!,DP#;

The file is opened for random reading and writing. The first parameter of the
OPEN statement is "D" to prevent extension of the file.

The programmer supplies the routine at line 10000 to determine which record
is to be processed next. On exit from that routine, RN% contains the record
number except that if RN% = 0, then the run is to end.

The record is then read. The resulting length of the string NM$ is 0 to 20
characters and of string ST$ is 0 to 15 characters depending on what the
corresponding file item actually had in it. Remember, no padding with spaces
was done during the item write and none is done during the GET.

The programmer supplies the routine at line 15000 to query the data in the
variables NM$, AN%, AM!, DT#, ST$, IG%, FP! and DP#. If the record is not to
be updated, it sets RN% = 0. Otherwise, it changes some or all of those
variables.

On return from this routine, if RN% is not zero, the record is written back
to the file. If one or more of the string variables have a new length, then
the corresponding file item assumes that new length.

Example 15. Sequentially write to a MI file.

MI and FI files are one long series of items. If the programmer logically
groups items into records, BASIC knows nothing of it since a record length is
not specified at OPEN, such as is done for field item, MF and FF files, nor
is there a record marker, such as the SOR (start of record) byte for MU files
and the EOL (end of line) byte for print/input files. Not knowing anything
about the programmer's possible logical record segmentation of MI and FI
files, BASIC cannot automatically advance to the next record such as was done
by the GET statement at line 80 in Example 12 where the remainder of a type 1
or type 2 record was bypassed.

We will use the code of Example 11 with one change, to generate a MI file
consisting of 3 record types (remember, BASIC knows nothing of records in MI
and FI files). Changing line 20 of Example 11 to:

20 OPEN "O",1,"XXX/DAT:1","MI"

we can generate the file used in Example 16 below.

APPENDIX BB-15

Example 16. Sequentially read a MI file.

The file created in Example 15 is used here. Though the programmer knows the
file contains records of 3 types, BASIC does not. Therefore, to advance to
the next record, the program must read the previous record completely, though
it need not do so all in one GET statement.

A MI file cannot be updated. This is restriction is made because of the
impossibility of handling strings whose lengths change.

10 CLEAR 2000
20 OPEN "I",1,"XXX/DAT:1","MI"
30 IF EOF(1) THEN END 'exit if empty file
40 GET 1,,,RT$; 'read record type character
50 IF RT$ <> "1" THEN PRINT "BAD RECORD TYPE": END
60 GET 1,,,NM$,AN%,AM!,DT#,ST$,IG%,FP!,DP#; 'read type 1 record
70 IF EOF(1) THEN END
80 GET 1,,,RT$ 'read next record type character
90 IF RT$ = "2" THEN 150
100 IF RT$ <> "3" THEN 50
110 GET 1,*,,SJ$,DF#,IP%,IA%,FG!; 'read type record
120 GOSUB 11000 'process using type 1 and 3 record data
140 GOTO 70
150 GET 1,,,SA$,SB$,LN$,PD1;: GOTO 70

Remember, though the comments in the above program discuss records, the
logical segmenting of the file into records is known only to the programmer
and not to BASIC.

Note that line 60 above used a null positioning parameter where line 60 in
Example 12 used the * positioning parameter. In Example 12, the * was used
because file positioning was to stay where it was and not advance to the next
record. However, since for MI and FI files, BASIC knows nothing of records,
the null and the * positioning parameters work exactly the same which is to
leave the file positioned where it is. Thus, in lines 40, 60, 80, 110 and 150
above, the positioning parameters null and * could have been used
interchangeably. Since it is easier to type a null than an *, the null will
tend to be used. Remember though, for MU, MF and FF file processing, there is
a difference between the meaning of null and the meaning of *.

Example 17. Sequentially write records to a FI file and sequentially write
index records at the end of that file to indexing into the main records.

The FI file is a very flexible file. It allows the programmer the capability
of the FF file while allowing records of different lengths. Remember, as if
the MI file, BASIC knows nothing of the programmer's segmenting of a FI file
into records. To the programmer though, the FI file can be an assortment of
all kinds of records. This example and Example 18 will use a FI file composed
of 5 different logical record types: the three record types used in examples
11, 12, 15 and 16, the index records used in the FF file in examples 9 and
10, and another 2 byte record type unique to the current file.

APPENDIX B B-16

In this example, we will assume the record type 1's AN% item is an account
number and that the account number is unique for each type 1 record. The file
is first written to contain all the records of the first 3 types. The RBA and
the account number of each type 1 record is saved in two BASIC arrays. After
all the data records are written, a 1 byte record is written to indicate the
end of the data records. Next, the two arrays are sorted into ascending
account number order. Index records are then written to the file. Lastly, the
number of index records is written to the file.

This example is a cross between Example 9 and Example 11 and most of the
comments there apply here, excepting that you are dealing with one FI file
instead of a MU file and a FF file.

10 CLEAR 2000
20 DIM AN%(4000),RB!(4000) 'arrays for index data
30 OPEN "O",1,"XXX/DAT:1","FI" 'open the combined data/index file
40 RC% = 0
50 RT$ = "1": GOSUB 10000 'create next type 1 record
60 IF RN% = 0 THEN 170 'done with main data
70 RC%=RC%+1: IF RC% > 4000 THEN PRINT "FILE T00 LARGE": GOTO 170
80 RB!(RC%) = LOC(1)! 'RBA where type 1 record will be stored
90 PUT 1,,,(1)RT$,(20)NM$,AN%(RC%),AM!,DT#,(15)ST$,IG%,FP!,DP#; write
type 1 rec
100 GOSUB 15000 'create type 2 or 3 record
110 IF RT$ = "2" THEN 150
120 IF RT$ <> "3" THEN 50
130 PUT 1,,,(1)RT$,(40)SJ$,DF#,IP%,IA%,FG!; 'write type 3 record
140 GOTO 100
150 PUT 1,,,(1)RT$,(3)SA$,(32)SB$,(14)LN$,PD!; 'write type 2 record
160 GOTO 100
170 IF RC% = 0 THEN PRINT "NO DATA RECORDS": END
175 RT$="0": PUT 1,,,(1)RT$; 'flag end of main data
180 CMD"O",RC%,AN%(1),RB!(1) 'sort index data
190 FOR X = 1 TO RC%
200 PUT 1,,,AN%(X),RB!(X); 'write index record
210 NEXT X
220 PUT 1,,,RC%; 'write number of index records
230 CLOSE: END

An advantage of writing the index records in with the data records is that
only one file is used for both, thus avoiding problems in backup and copy of
keeping a data and an index file in synchronization with each other. In
examples 9 and 10 we could have used only one file, storing the index again
on the back end of the MU file.

Since the file is a fixed item type, all named string variables in the IGELs
must be prefixed with the length the file item is to have. Truncation or
padding with spaces on the right takes place as the string data is moved to
the file item.

As with Example 9, exactly the same results would have been attained had text
lines 80 and 90 above been written as:

APPENDIX BB-17

80 PUT 1,,,(20)NM$,AN%(RC%),AM!,DT#,(15)ST$,IG%,FP!,DP#
90 RB!(RC%) = LOC(1)# 'RBA where the record was placed

Note at line 175 a one byte end-of-main data record is written. This
separator is needed by Example 18.

Example 18. Randomly read and optionally update the data records of an
indexed MI file.

The file created in Example 17 is used here. The last two bytes of the file
are read to determine the number of index records (and type 1 records). The
index records are then read into two arrays. Then selected data record groups
are read from the file and optionally the DF# and IA% items of the type 3
records are updated back to the file.

This example is a cross between Example 10 and Example 12 excepting that both
the index and the data are contained within the FI file, only two items of
the type 3 record are updated, and other differences as noted below.

10 CLEAR 2000
20 DIM AN%(4000),RB!(4000) 'two arrays for index data
36 OPEN "D",1,"XXX/DAT:1","FI"
40 X! = LOC(1)% - 2 'compute RBA of file's last 2 bytes
50 GET 1,!X!,,RC%; 'read in count of index records records
60 GET 1,!$(X!-6*RC%) 'position file to 1st index record
70 FOR X = 1 TO RC% 'read index data into the two arrays
80 GET 1,,,AN%(X),RB!(X);
90 NEXT X
100 GOSUB 10000 'determine which account to process
110 IF RN% = 0 THEN END 'run is completed
120 FOR X = 1 TO RC% 'search account # array for match
130 IF RN% = AN%(X) THEN 150
140 NEXT X: PRINT "BAD ACCOUNT NUMBER": GOTO 100
150 GET 1,!RB!(X),,(1)RT$,(20)NM$,AN%,AM!,DT#,(15)$,IG%,(12)$; 'type 1 rec
160 IF RT$ <> "1" THEN PRINT "BAD INDEX": END
170 IF RN% <> AN% THEN PRINT "BAD FILE DATA": END
180 GET 1,,,(1)RT$; 'read next record's type char
190 IF RT$ = "3" THEN 230
195 IF RT$ = "1" OR RT$ = "0" THEN 100 'test end of account
200 IF RT$ <> "2" THEN PRINT "BAD FILE DATA": END
210 GET 1,*,,(3)SA$,(32)SB$,(14)LN$,PD!; 'bypass type 2 record
220 GOTO 180
230 GET 1,,,(40)SJ$,DF#,(2)$,IA%,FG!; 'read type 3 record
240 GOSUB 11000 'process type 1 and 3 record data
250 IF RN% <> 0 THEN PUT 1,$,,(40)$,DF#,(2)$,IA%,(4)$; 'update type 3 rec
260 GOTO 180

At line 40, note the use of the LOC(1)% function to obtain the RBA of the
file EOF. This is used to compute the RBA of the next to the last byte in the
file as the files last 2 bytes contain the integer count of both the number
of index records in the file and the number of type 1 records in the file.
This integer value is read into RC% at line 50.

APPENDIX B B-18

At line 60, using this index record count, the RBA of the 1st index record is
computed and the file positioned to the start of the first index record. Note
that the computation is done right in the GET statement's file positioning
parameter. This may be done provided the computation itself does not
reference a filearea. Also note that the file positioning parameter is of the
!$rba type (see section 8.8.6), meaning that this GET is for file positioning
only; an IGEL or IGELSN is not allowed, and no data transfer takes place.

The programmer supplied routine at line 10000 determines the account number
for the group of records to be interrogated. If no more accounts are to be
read, set RN% = 0; otherwise set RN% = to the account number.

At line 150 the file is positioned using the RBA associated with the account
number in the index arrays. The type 1 record is then read. It has been
arbitrarily decided that it is not necessary to know what is in the file
items corresponding to ST$, FP! and DP# (see line 90 in Example 17).
Therefore, these items can be bypassed. However, since this is fixed item
file, it is necessary to inform BASIC of the number of files bytes of be
skipped, using the (len)$ format (see section 8.4.3.3). The (15)$ causes the
skip of the 15 file bytes that would normally be read into the string ST$.
The (12)$ causes the skip of the 4 bytes that would normally be read into FP!
and the 8 bytes that would normally be read into DP#. Lastly, if this IGEL
was used in FF file processing, the (12)$ expression could have been dropped
from the IGEL, as no other expressions follow it in the IGEL and the next GET
with null positioning parameter will advance the file to the next record. In
FI processing, the programmer must account for all of the record's space
since BASIC knows nothing of his/her record structure, hence the (12)$ is
required.

At line 210, though all we want to do is skip the type 2 record, we still
must advance the file positioning as once again, BASIC knows not where this
record ends. The same file position advancement could have been obtained
with:

120 GET 1,,,(53)$; 'bypass rest of type 2 record

The programmer supplied routine at 11000 processes the data from the type 1
and 3 records. If the type 3 record is not to be updated, set RN% = 0.
Otherwise change either or both of DF# and IA% and set RN% non-zero.

The PUT statement at line 250 repositions the file to the REMBA position
remembered by the GET at line 230. The type 3 record is then updated. Note
that only 2 of the items, those corresponding to DF# and IAA, are replaced in
the file (compare with line 130 of Example 12). The other items are skipped
over and are not changed. In using the (len)$ or (lend expressions in the
IGEL, the programmer must be certain to account for the proper number of
bytes.

The use of the (len)$ type expression in the IGELs of lines 150 and 250 was
done only to give examples of the (len)$ use. The user might prefer to just
use the regular IGELs, changing those two lines to be:

150 GET 1,*,,(1)RT$,(20)NM$,AN%,AM!,DT#,(15)ST$,IG%,FP!,DP#;
and

250 IF RN% <> 0 THEN PUT 1,$,,(40)SJ$,DF#,IP%,IA%,FG!;

APPENDIX CC-1

APPENDIX C

NEWDOS/80 VERSION 2.5 --- THE NEWDOS/80 VERSION 2 HARD DISK SYSTEM

Section 1: Overview
Section 2: Comments and Restrictions
Section 3: Changes to PDRIVE
Section 4: Formatting your hard disk
Section 5: Moving NEWDOS/80 to the hard disk.
Section 6: Defining PDRIVE slots from a volume definition file
Section 7: Backing up hard disk to diskettes

The NEWDOS/80 Version 2 modified for hard disk operations is called both the
NEWDOS/80 Version 2 Hard Disk Operating System and NEWDOS/80 Version 2.5. The
difference between the regular NEWDOS/80 Version 2 and Version 2.5 is the
inclusion in 2.5, via patches, of code to handle the hard disk. This
documentation for NEWDOS/80 Version 2.5 is considered as Appendix C to the
regular NEWDOS/80 Version 2 manual and should be inserted into that manual
after Appendix B.

NEWDOS/80 Version 2.5 is NOT offered as a stand alone DOS; the regular
NEWDOS/80 Version 2 must be PURCHASED and REGISTERED either prior to or at
the time of purchase of NEWDOS/80 Version 2.5.

As usual with NEWDOS/80, the user should study this document carefully before
attempting to do anything with the NEWDOS/80 Version 2.5 Hard Disk Operating
System.

The basic NEWDOS/80 Version 2.5 supports Apparat's and Tandy's hard disks for
either the TRS-80 Model I or III. Special Version 2.5 system diskettes may
later be made available for other types of hard disks.

You may have already been using your hard disk under LDOS or another DOS and
have valued user files on the lard disk. If this is so, you are already a
serious hard disk user and cannot afford to lose valued data just because you
are switching DOSs. You Faust:

CAREFULLY plan your move.

Backup up those files from hard disk to diskette using that DOS's offload
program. This is insurance in case the conversion to NEWDOS/80 fails; you can
reformat the hard disk(s) for the other DOS and reload the files.

Move NEWDOS/80 Version 2.5's HDBACKUP/CND program over to that DOS (see the
NND parameter discussion in section 7).

Use HDBACKUP under that DOS to again offload your files to another set of
diskettes. Remember to use the SAVE, INCLUDE and NND parameters. Also
remember, for 5 million bytes of data, the HDBACKUP SAVE function will need
27 pre-formatted single sided, double density 40 track (720 sector)
diskettes.

Initialize the hard disks for NEWDOS/80 Version 2.5 using HDFMTAPP, PDRIVE
and FORMAT.

APPENDIX C C-2

Use HDBACKUP under NEWDOS/80 Version 2.5 to RESTORE the files from diskettes
to the hard disks. Carefully plan this move; you may decide to use more than
one RESTORE from the same backup to get the various files where you want
them.

1. OVERVIEW

1. A data file may contain as many as 16 million bytes.

2. A hard disk data volume can be up to 65535 sectors and contain up to
246 user files.

3. PDRIVE allows a maximum of eight active slots with a maximum of 4
floppy data volumes or eight hard disk volumes active at one time.

4. The capacity to support hard disk drives of over 100 million bytes
exists, though currently only the Apparat and Tandy hard disk drives
are supported.

5. A hard disk drive is divided into one or more drive sections.

6. A hard disk section is divided into one or more data volumes. The
data volume is what is defined by PDRIVE. A data volume may not span
multiple hard disk drives or drive sections.

7. 48K of RAN is required. The hard disk modifications for NEWDOS/80
Version 2.5 have preempted computer main memory 0F900H - 0FFFFH.
Programs that execute in that area must no longer be used.

8. Aside from the main memory limitation above, most programs that work
with NEWDOS/80 Version 2 will work with NEWDOS/80 Version 2.5. However,
if any program assumes certain volume sizes (i.e. 350 sectors on the
Model I or 720 sectors on the Model III) or a certain location and size
of the directory, that program will have to be modified. Basically,
programs that use standard file I/O and observe HIMEM should be OK.

9. The hard disk system can operate either from floppy drive 0 (in
which case floppies retain their old drive numbers) or from the hard
disk (in which case, floppy drives 0 - 3 become drives 4 - 7
respectively). Section 5 steps the user through the shift of the system
from a floppy to a hard disk volume.

10. Program HDFMTAPP/CMD is used to magnetically format Apparat and
Tandy hard disks.

11. Program HDBACKUP/CMD is used to selectively save hard disk files
of any size onto floppies or to selectively restore them to hard disk.
This is NEWDOS/80 Version 2.5's hard disk backup facility and must be
used to make backup copies of valued data files. Further, the program
HDBACKUP/CMD can be transferred to another DOS (see NND parameter in
section 7) so that the program can be used under that DOS to offload
user files to diskette preparatory to changing the hard disk to operate
under NEWDOS/80 Version 2.5 on to onload user files from diskette to
hard disk should the user wish to take the hard disk back to the other
DOS.

APPENDIX CC-3

12. Program EXTPDRIV/BAS can be used to set PDRIVE slot definitions
from definitions stored in an ASCII text file. Since hard disk data
volume specifications are both difficult and critical, it is
recommended they be permanently built in a text file via SCRIPSIT or
CHAINBLD and then activated when needed via EXTPDRIV.

13. Parameter HDS has been added to DOS command PDRIVE to define hard
disk volumes.

14. Hard disk volumes defined under Model III NEWDOS/80 can be used
under Model I NEWDOS/80 and vice versa. The files on these volumes are
NOT useable interchangeably if they were NOT useable interchangeably
when those files were on diskettes.

2. COMMENTS and RESTRICTIONS:

1. The user must be knowledgeable of NEWDOS/80 Version 2 and all
subsequent information issued via the zaps prior to attempting to use
the Hard Disk system. All hard disk discussion herein assumes this
knowledge. This document is intended only as supplementary information
to the regular NEWDOS/80 Version 2 manual and its subsequent zaps.

2. This document does NOT provide information about your hard disk.
That information must be obtained from the source where you purchased
or otherwise obtained your hard disk. The information NEWDOS/80 needs
to know about your hard disk drive is (1) the number of recording
surfaces (or number of I/O heads), (2) the number of tracks per surface
(or the number of cylinders), (3) the number of 256 bytes sectors
actually formatted on each track, and (4) track-to-track stepping rate
code.

3. NEWDOS/80 Version 2 was not designed to operate with hard disks. All
of the changes creating Version 2.5 have been done by patching the
standard Version 2, with the exception that SYSO/SYS has been extended
five sectors. This patching to Version 2 provides a minimum hard disk
operating system and each specially purchased hard disk system diskette
will operate with one and only one type of hard disk drive. If another
type of hard disk drive has exactly the same interface to the computer,
then it can also work with a particular hard disk system diskette
(example, both Tandy's and Apparat's hard disks for the Model I and
Model 3 have the sane software interface, therefore either (but not
both at the same time) can be used with the same Version 2.5 Hard Disk
system diskette). The standard issue NEWDOS/80 Version 2.5 hard disk
system supports Apparat's and Tandy's hard disks for either the TRS-80
Model I or III.

4. This system REQUIRES 48K of RAM. To implement hard disk code, main
memory from F900H to FFFFH has been taken by DOS and is not available
to the users. Any user programs that use this area MUST either no
longer be used or be modified to no longer use the F900H to FFFFH main
memory area. HIMEM is set to 0F8FFH by DOS automatically and programs
that observe HIMEM should be all right.

5. The number of active PDRIVE slots (formerly called drives) has been
expanded from 4 to 8, allowing a maximum of 4 floppy volumes, 8 hard
disk volumes or a combination thereof. The number of actual active

APPENDIX C C-4

PDRIVE slots is still controlled by SYSTEM option AL. If a ?DRIVE
active slot is to be unused, defining it as a hard disk volume and
setting the PDRIVE HDS sub-parameter vsc1 to 0 will cause PDRIVE to
accept the definition in an active slot and NEWDOS/80 to treat the slot
as DEVICE NOT AVAILABLE whenever it attempts to use that slot (drive).

6. Two floppy drives are desirable, though only one is required. The
Version 2.5 Hard Disk System comes on a standard 40 track, double
density diskette on the Model III and a standard 35 track, single
density diskette on the Model I. Since the capacity of the Model I
diskette is too small to contain all the files for the hard disk system
as cell as those of the nor.-hard disk system, some of the files (or
program modules) of the regular NEWDOS/80 are not present on the hard
disk system diskette. When needed, you may copy these modules over from
the regular NEWDOS/80 system diskette.

7. The user may elect to run using a floppy system diskette (a copy of
the Version 2.5 Hard Disk System diskette) or he/she ray move the
NEWDOS/80 Version 2.5 Hard Disk System onto a hard disk volume.

1. If the system is being run from floppy drive 0 (the normal
drive 0 for the computer), the floppy drives 0 - 3 use PDRIVE
slots 0 through 3 respectively, just as they do in the regular
NEWDOS/80 Version 2. Under the floppy hard disk system, PDRIVE
slots 1 - 7 may be defined as hard disk volumes and accessed by
user programs as drives 1 - 7 respectively.

2. If the system is being run from hard disk, the floppy drives 0
-3 use PDRIVE slots 4 through 7 respectively, and the floppy
drives 0 - 3 are known to the system and user programs as drives
(or slots) 4 through 7 (though you may use any or all of drives
(or slots) 0 through 7 for hard disk volumes).

***** Warning, when the system is being run from the hard
disk, access to the floppy drives is slots 4 - 7 meaning
that all slots between the system volume in slot 0 and the
slot being used by the floppy drive MUST be valid
definitions even though you are using only one hard disk
volume. PDRIVE will allow and DOS will ignore a slot
defined for a null hard disk volume (having the HDS sub-
parameter vsc1 equal 0), thus allowing access to the floppy
drives.

8. The DOS command FORMAT or the format portion of COPY do NOT actually
format the hard disk; instead of formatting, the message, INITIALIZING
SECTORS, is displayed and the sectors are written with a standard
pattern. To actually format the Apparat or Tandy hard disk, use the
HDFMTAPP/CAD program provided. To format another hard disk, you must
use a program provided by the hard disk retailer (NOT provided by
Apparat).

APPENDIX CC-5

9. This hard disk upgrade does NOT support the standard LDOS TRS-80
hard disk data volumes as directory concepts slightly differ, though
those volumes can be read via SUPERZAP by expert users (provided the
hard disk is divided into sections properly, spg1 value is 16, the
ddsl1 value is 76, the ddsa1 value is 32, and the gpl1 value is 2 for
one surface volumes, 4 for two surfaces, 6 for three surfaces and 8 for
four surfaces)(changing HIT sector rel byte 1FH from 00H to 16H allows
DIR to work and many other functions marginally)(you are on your own
processing LDOS volumes under NEWDOS; don't call Apparat when you get
into trouble). Basically, when shifting from one DOS to another, the
user must off-load the hard disk files to floppies under that DOS using
the NEWDOS/80's HDBACKUP program and bring them back in under the other
DOS using NEWDOS/80's HDBACKUP program (the NND parameter must be used
when the DOS is other than NEWDOS/80).

10. A number of user programs read and interpret the directory. If
that program was reading the directory as the DIR/SYS file, observing
the protected sector error code and observing EOF, there should be no
problem. If the program was using the DDSL value in the data volume 1st
sector to compute the directory location, the program will fail unless
the data volume has spg1 = 5. If the program was assuming the location
and size of the directory, it will most probably fail!!!

11. A data volume must not exceed 65535 sectors. Aside from the space
used by BOOT/SYS and DIR/SYS on that data volume, all the remaining
space may be allocated to one file, over 16 million bytes. The sector
range assigned to one data volume must NOT overlap that of any other
data volume; it is the user's responsibility, through careful PDRIVE
definition of the data volumes, to avid this overlap, which can be
quite disastrous.

12. A hard disk drive is logically divided into one or more data
volumes via judicious use of the PDRIVE HDS parameter. Though a data
volume is limited to a maximum of 65535 sectors, a hard disk drive is
limited ONLY by its actual capacity AND the limitations that Sectors
Per Track (SPT or spg1) must be less than 256, Tracks Per Cylinder
(TPC)(or RSC (Recording Surface Count)) must be less than 256, Tracks
Per Surface UPS or tps1) must be less than 65536, and TPS times TPC
must be less than 65536.

13. A hard disk physical drive's space may be divided into drive
sections. Normal NEWDOS/80 Version 2.5 operations DO NOT require this.
However, if your division of the hard disk is to be such that part of
the hard disk is to be used for data volumes of another DOS (such as
LDOS) which assigns data volumes in units of one or more entire
recording surfaces, it is necessary to sectionalize your hard disk
under NEWDOS/80. This is done by setting the PDRIVE HDS sub-parameter
ssc1 value to the number of recording surfaces assigned to that drive
section and by setting, the sfs1 value to the relative number of the
first recording surface assigned to that drive section. For a given
drive, no two sections may share the same recording surface, and no
data volume may have space assigned from more than one drive section.

14. For DOS command COPY, the =tc1 parameter is not legal if the
SOURCE is a hard disk data volume. For FORMAT and COPY, the =tc2, DDSL
and DDGA parameters are not legal if the DESTINATION is a hard disk

APPENDIX C C-6

data volume. For FREE and the header of DIR, to avoid ambiguity, a
track count of 0 is displayed if the data volume is on a hard disk.

15. The SUPERZAP displays may look awkward as they were not designed
to handle over 9999 sectors. However, they do work, excepting that TRK
and SOT values are not displayed for sectors on hard disk. The DTS main
menu function is not allowed for hard disk volumes.

16. Format 5 COPY (full diskette COPY) requires that SOURCE and
DESTINATION have the same GPL and SPG values and, if the destination is
on a hard disk, the same ddsl1 and ddsa1 value. Otherwise format 6 COPY
(Copy By File) must be used.

17. Hard disk volumes defined under Model III NEWDOS/80 can be used
under Model I NEWDOS/80 and vice versa if NEWDOS/80 supports the drive
for the Model I and III. The files on these volumes are NOT useable
interchangeably if they were NOT useable interchangeably when those
files were on diskettes (such as system program and most user,
non-BASIC program files). If you intend to use a hard disk with both
your Model I and your Model III (though not at the same time) and
intend to run the system from that hard disk, you should create two
system volumes on the hard disk, one for the Model I and one for the
Model III.

18. ****** Errors may occur in DIRCHECK and SUPERZAP if DFG
(MINI-DOS) or 123 (DEBUG) are used during the program's execution and
the target drive is not explicitly re-specified after conclusion of
MINI-DOS or DEBUG. After MINI-DOS or DEBUG in SUPERZAP, it is
recommended that you return to the main menu or do the 'J' display
function; for DIRCHECK, respond Y or N to the menu.

3. CHANGES TO PDRIVE for hard disk operation.

No existing parameters in PDRIVE have been changed (so floppies are defined
exactly as before), and one parameter, the HDS parameter, has been added to
accommodate the hard disks.

The TRS-80 diskette directory was originally intended for 35 or 40 track
diskettes of 350 to 400 sectors. In NEWDOS/80 Versions 1 and 2, the directory
was modified somewhat to allow for a maximum of 222 user files instead of 62
and allow a maximum of 1536 granules instead of 192. To get these extra
granules, the granule lockout table was eliminated from the GAT sector and
number of granules per lump (GPL) was expanded from the old implied value of
2 to a user specified value with a maximum value of 8. At 5 sectors per
granule, this allowed for 7680 sectors (1,966,080 bytes) per data volume.

However, with hard disks, we really want the capability of allowing a volume
to be up to 65535 sectors and a file to be not much less than that. In order
to retain the same directory structure but increase the number of sectors for
a data volume, we have changed the number of Sectors Per Granule from the old
implied value of 5 to a user specified value of not more than 255.
Theoretically, this should allow for 1536 * 255 = 391,680 sectors, but there
is another governing restraint, that of the NEXT and EOF fields of the
directory FPDE and the file's FCB. These fields allow for a maximum of 65535
sectors (if wrap around is to be avoided). Normally this restriction limits
the size of a file, but actually this restriction limits a data volume's size

APPENDIX CC-7

since NEWDOS/80 has a special use of the FCB that allows sector I/O directly
to a data volume, bypassing the file concept altogether. Therefore, the
NEWDOS/80 version 2.5 hard disk system limits a data volume to 65535 sectors
(16,776,960 bytes). Since each volume has a BOOT/SYS file and a DIR/SYS file,
the maximum size of a user file is somewhat less than 65535 sectors.

Though 5, 10 or 15 million byte hard disk can be treated by NEWDOS/80 as one
data volume, it is generally desirable to divide a hard disk into more than
one data volume. NEWDOS/80 allows the user great flexibility in this,
admittedly at a cost of complexity (as usual with NEWDOS/80's PDRIVE which
many users are still uncomfortable with). A PDRIVE slot definition actually
specifies a data volume, not a floppy drive or a hard disk drive or a hard
disk drive section. The specifications for the drive and, optionally, drive
section are simply part of the specifications of a data volume.

The definition of hard disk data volumes is more difficult and more critical
than for floppy diskette data volumes. The user is solely responsible of
assuring that a hard disk sector is NOT shared by two or more data volumes.
As an aid to the user, the BASIC program EXTPDRIV/BAS has been provided to
search an ASCII text file for a specified definition and assign the
definition to a specified PDRIVE slot. Using SCRIPSIT or CHAINBLD, the user
can carefully and permanently build his/her hard disk data volume definitions
(actually just the HDS parameters), and later, when a particular data volume
is needed in a particular PDRIVE slot, EXTPDRIV can be used to effect this
assignment.

Further, NEWDOS/30 Version 2.5 does NOT maintain a table of bad hard disk
sectors. If your hard disk has bad sectors, you must either operate that
drive with a sufficiently reduced SPT (sectors per track) value or you must
define data volumes such that the bad sectors at not included within any data
volume.

Since a hard disk data volume's definition has more values than for a floppy
data volume, and we want to limit each slot's definition to one line on the
display, we have decided to combine all 12 values of a hard disk data volume
specification into one parameter, the SIDS (Hard Disk Specification)
parameter. The 12 values are called sub-parameters; ALL 12 MUST be given EACH
time the HDS parameter is used, and all must be in the exact order specified.
The specification of the LIDS parameter is:

HDS=(hddn1,tps1,sfs1,ssc1,spt1,tsr1,vfs1,vsc1,spg1,gpl1,ddsl1,ddsa1)

where:

1. hddn1 means Hard Disk Drive Number and is the relative number (0
3) of the drive on the hard disk cable with 0 being the first drive.
hddn1 specifies which physical hard disk drive the data volume is on.

2. tps1 means Tracks Per Surface and is the number of tracks per
recording surface (also the number of cylinders) for the hard disk
drive. Each recording surface of the drive has tps1 number of tracks.
tps1 is an integer from 0 to 65536. For Apparat hard disks, tps1 = 306.
For Tandy 5 Meg hard disks, tps1 = 153.

LDOS 5.1.3 appears unable to support the tps1 value of 306 used with
Apparat's hard disk. However, an Apparat 10 Meg hard disk (with tps1 =

APPENDIX C C-8

306 and RSC = 4) can be used as a 5 Meg hard disk with LDOS 5.1.3 where
implied values of tps1 = 153 and RSC = 4 are used.

3. sfs1 means Section First Surface and is the relative number of
the first surface of the hard disk drive assigned to the drive section
containing the data volume. sfs1 is an integer between 0 and RSC-1. If
you are not sectioning your hard disks, sfs1 will always be 0.

RSC means Recording Surface Count and is the number of recording
surfaces for the hard disk. Another term for the number of recording
surfaces is TPC (Tracks Per Cylinder). For Apparat 5, 10 and 15 Meg
hard disks, CSC is 2, 4 and 6 respectively. For Tandy 5 Meg hard disks,
RSC is 4.

4. ssc1 means Section Surface Count and is the number of
consecutive surfaces of the hard disk drive assigned to the drive
section containing the data volume. ssc1 is an integer between 1 and
RSC with the sum of sfs1 and ssc1 not greater than RSC. If you are not
sectioning your hard disks, ssc1 will always equal RSC.

5. spt1 means Sectors Per Track and is the number of 256 byte
sectors on each track of the hard- disk drive which in turn is the
number of sectors formatted on each track by the format program
supplied with your hard disk for Apparat and Tandy hard disks, this is
the HDFMTAPP program). spt1 is an integer from 1 to 255. Normally,
Apparat and Tandy hard disk drives have 32 sectors per track; however,
if during HDFMTAPP formatting of the hard disk, a track is found with
more than one error sector, it will be necessary to format the hard
disk with less titan 32 sectors per track unless you intend to define
data volumes to bypass the bad sectors; remember, NEWDOS/80 does NOT
maintain a hard disk bad sector table.

6. tsr1 means Track Stepping Rate and is a code used by DOS to send
track-to-track stepping rate information to the hard disk controller
wizen it is necessary to move the disk arm which contains the
read/write heads. tsr1 is an integer between 0 and 255. Apparat hard
disk use tsr1 = 0. Tandy 5 Meg hard disks require tsr1 = 6.

7. vfs1 means Volume First Sector and is the relative sector number
within the drive section of the data volume's first sector (the data
volume's relative sector 0). vfs1 is an integer between 0 and
16,777,215 with an effective upper limit of one less than the number of
sectors assigned to the drive section (if a hard disk is not sectioned,
the hard disk is one in the same as its one section). If vfs1 = 0, then
the data volume's sector range starts with the first sector of the
drive section; further, if both vfs1 and sfs1 are 0, the data volume's
range starts with the drive's 1st sector.

8. vsc1 means Volume Sector Count and is the number of consecutive
sectors of the drive section, beginning with sector vfs1, assigned to
this data volume. vsc1 is an integer between 0 and 65535 but the sum of
vfs1 and vsc1 must not exceed the number of sectors assigned to the
drive section (which is tps1 * ssc1 * spt1). If vsc1 is simply the
asterisk character instead of an integer, PDRIVE will assign all of the
drive section's remaining sectors to the data volume.

APPENDIX CC-9

*********** IMPORTANT. PDRIVE will accept a vsc1 value of 0, meaning a
null data volume, and it will allow the data volume definition into an
active slot (provided the definition has no other errors). If vsc1 is
0, DOS will generate a DEVICE NOT AVAILABLE error whenever a slot is
selected that contains this data volume. This is needed as a way of
filling in PDRIVE slot definitions so that access can be made to slots
4 - 7 for floppy diskette operations when running the system from hard
disk and not all of slots 1 to 3 are defined for valid hard disk data
volumes.

The sub-parameters hddn1, tps1, sfs1, ssc1, spt1, vfs1 and vsc1 combine
to define a unique range of hard disk sectors assigned to the data
volume. No sector in this range may be shared by another data volume
defined by PDRIVE; it is the user's responsibility to avoid this
conflict. Otherwise, the same sector can end up being used for two
different purposes.

9. spg1 means Sectors Per Granule and is the number of sectors in
each allocation granule for this data volume. spg1 is an integer
between 1 and 255. If spg1 = 0 is specified, PDRIVE will compute the
lowest spg1 above 4 that will suffice for the gpl1 value specified and
the number of sectors assigned to the data volume (vsc1).

When DOS assigns disk space to a file, it does so in minimum units
called granules; so the spg1 value defines the minimum number of
sectors allocated to a file and also is one more than the maximum
number of sectors that a file will have allocated beyond its needs.
Generally, it is desirable to have a small spg1 value, but the smaller
the spg1 value, the smaller the maximum size a data volume may be. In
the regular NEWDOS/80 Version 2, a SPG value of 5 was implied and
always used, except in some of the COPYs to and from special TRSDOS
diskettes. If full diskette COPY (not CBF) compatibility is wanted with
the floppies, spg1 = 5 must be used as that is the standard in the
NEWDOS/80 Version 2 floppy world.

****** Warning, when a NEWDOS/80 system volume is being COPY'ed using
CBF and the destination spg1 value is less than the source spg1 value,
DISKETTE GAT OVERFLOW error may occur. The only alternative is to copy
the system from the hard disk system diskette and use a destination
spg1 greater than 4.

10. gpl2 means Granules Per Lump and is the maximum number of
allocation granules for each byte in the data volume directory's
Granule Allocation Table in the GAT sector (the first sector of the
directory). gpl1 is an integer between 2 and 8. GPL = 2 is the standard
for the old Model I TRSDOS 2.3, and the NEWDOS/80 Version 2 master
diskettes use GPL = 2. However, any data volume, whether hard disk or
floppy, with more than 1920 sectors, should use a larger GPL under the
criteria that it is better to increase the GPL that the SPG. It is
recommended that if GPL = 2 is not used, then use GPL = 8. Though the
other values are legal, don't use them unless you are attempting
compatibility with another DOS.

A lump???? For NEWDOS/80 Version 2, we wanted to eliminate the
one-to-one correspondence between a byte in the GAT table and a
diskette (or hard disk) track or cylinder so that granules could flow
across track and cylinder boundaries. A granule's allocation state is

APPENDIX C C-10

handled by one bit in the GAT, and we wanted to use all eight bits in
each GAT byte to extend the number of granules the GAT could account
for. However, the old TRSDOS 2.3 standard was to use only the right two
bits of each GAT byte; so we couldn't arbitrarily force all directories
to start using all 8 bits. Yet, we wanted to allow use of all 8 bits;
so we had to come up with a name for a byte in the GAT as distinct from
anything else. Under the assumption that if a number of sectors is a
granule, then a number of granules could be called a lump, we defined a
lump to be simply a byte in the Granule Allocation Table in the data
volume directory's first sector, and that's all it is.

11. ddsl1 means Default Directory Starting Lump and means the
relative number of the lump whose 1st sector is the beginning of the
data volume's directory. ddsl1 is an integer between 1 and 191, though
no guarantee is given that a particular value will work. The standard
ddsl1 value in the 35/40 track single sided, single density diskette
world was and is 17, and your master NEWDOS/80 system diskette uses
that value. If ddsl1 = 0 is specified, NEWDOS/80 will compute a ddsl1
value somewhere near the middle of the data volume, but not greater
than 80, as it is assumed more data will exist near the beginning of
the volume than at the end.

All Model I and Model III DOSS put the directory somewhere in the
middle of the data volume. Since NEWDOS/80 runs with a variety of
diskette and hard disk capacities, NEWDOS/80 allows the user to specify
where the directory is to be put. The ddsl1 value is this
specification. NEWDOS/80 stores the ddsl1 value in 3rd byte of the
first sector of BOOT/SYS (also the first sector of the data volume)
during data volume format (either FORMAT or COPY) so that DOS (and
clever users) can find the directory. NEWDOS/80 senses it has lost the
directory location when it reads a directory sector that is not
protected. It then goes to the 3rd byte of the volume's 1st sector for
the ddsl1 value and computes the directory location. The standard DDSL
value for the 35 and 40 track single density diskettes was 17, but as
diskettes have increased in capacity and hard disks have appeared,
starting the directory at lump 17 placed it too close to the start of
the data volume. For dual sided 80 track, double density diskettes with
GPL=8, it was common to put the directory at lump 35.

In the diskette world, DDSL has meaning only when a diskette is
formatted as NEWDOS/80, at all other times, can find the directory when
it wants to. However, in the hard disk world, since we can't write
directory sectors with address marks different from the other sectors,
NEWDOS/80 cannot tell when it should go to the volume's first sector,
get the ddsl1 value, and re-compute the location of the directory.
Therefore, the ddsl1 value is used by NEWDOS/80 at all. tines to know
where a hard disk volume directory is. If you change the ddsl1 value at
a time other then just before the hard disk volume is formatted,
NEWDOS/80, without realizing it, will process non-directory data as
directory data.

12. ddsa1 means Default Directory Sector Allocation and specifies the
number of sectors to be used for the directory. ddsa1 is an integer
from 10 to 33. This ddsa1 value is different than the DDGA value used
by PDRIVE for floppy diskette definitions. Do not confuse the two. The
change from DDGA to DDSA was necessitated by the fact that SPG for the
hard disks is no longer a standard 5 sectors per granule. A ddsa1 value

APPENDIX CC-11

of 10, 15, 20, 25 and 30 is compatible with older configurations that
used DDGA=2, 3, 4, 5 or 6 respectively. A ddsa1 value of 33 allows a
data volume to have a maximum of 246 user files. Unless a hard disk
data volume is to be small or compatibility with diskettes is to be
maintained, it is recommended that ddsa1 = 33 be used.

The ddsa1 value for hard disk is more important than the DDGA value is
for floppies. The DDGA value is used only at diskette format time. The
ddsa1 value, along with the ddsl1 value, is the only way the DOS sector
I/O routines know if a sector is part of the hard disk data volume
directory or not; therefore, if the ddsa1 value is to be chanted, it
must be changed only before a hard disk data volume is formatted. The
ddsl1 and ddsa1 values are the ONLY way the NEWDOS/80 sector I/O
routines know that a given hard disk sector is a directory sector.

EXAMPLES:

****** Remember, when parameter HDS is specified, all 12 sub-parameters
must be supplied in the correct order.

1. PDRIVE,0,1,HDS=(0,306,0,2,32,0,0,2880,5,8,35,33)
specifies a 2880 sector data volume with 5 sectors per Granule, 8
granules per lump, a 33 sector directory positioned at the start of
lump 35. TLC first 2880 sectors of the first drive section of hard disk
drive 0 will be allocated to this volume. The drive section consists of
the first 2 recording surfaces of the drive, which may or may not be
all that the drive has. Each recording surface has 306 tracks. Each
track has 32 sectors and the drive's stepping rate code is 0. This data
volume cam he accessed by user programs as drive 1.

2. PDRIVE,0,2,HDS=(1,153,1,3,32,6,2000,10000,0,8,0,33)
specifies a data volume on hard disk drive 1 that has 153 tracks per
surface and 32 sectors per track. The drive section consists of the
2nd, 3rd and 4th recording surfaces. The data volume consists of 10,000
sectors beginning with the drive section's relative sector 2,000.
PDRIVE will compute the sectors per granule and use 8 granules per
lump. PDRIVE will compute the position of the 33 sector directory
within the volume. User programs will access this data volume as drive
2.

3. PDRIVE,0,1,HDS=(0,153,0,4,32,6,0,*,0,8,0,33) specifies a data volume
that occupies all 19,584 sectors of the first four recording surfaces
of hard disk drive 0. The vsc1, spg1 and ddsl1 values are computed by
PDRIVE. User programs will access this data volume as drive 1.

4. PDRIVE,0,3,HDS=(0,153,0,1,32,6,0,0,5,2,17,33)
specifies a null data volume (vsc1 value is 0). NOTE, all other sub-
parameters must be valid. If a user program attempts I/O via drive 3,
DEVICE NOT AVAILABLE, error will occur. However, the FREE command and
any other DOS functions that search the various drives will ignore
drive 3.

EXAMPLES OF PDRIVE COMBINATIONS:

1. Settings to exactly overlay the standard LDOS values on a single
Tandy 5 Meg drive where each of 4 volumes has one surface.

APPENDIX C C-12

HDS=(0,153,0,1,32,6,0,4896,5,8,61,33)
HDS=(0,153,1,1,32,6,0,4896,5,8,61,33)
HDS=(0,153,2,1,32,6,0,4896,5,8,61,33)
IDS=(0,153,3,1,32,6,0,4896,5,5,61,33)

This divides the hard disk drive into 4 drive sections, each containing
one data volume. If you assign the 4 definitions to PDRIVE slots 0 - 3
respectively, you must have moved the NEWDOS/80 system to hard disk as
described in section 5. However, if you assign these definitions to
slots 4 - 7 and have previous file data from LDOS operation, you can
look at that data via SUPERZAP (if you are interested), and you can
look at the directory starting at relative sector 2432.

2. The user has one Apparat 5 Meg drive, fundamentally wants all
his/her user files accessible via drive 1 with a small amount of work
space on drive 2. The user wants to run using a hard disk system volume
for drive 0 and to be able to access to his two floppies via slots 4
and 5. With SYSTEM option AL = 6, the definitions for slots 0 - 5 will
be as follows:

HDS=(0,306,0,2,32,6,6,720,5,8,17,10)
HDS=(0,306,0,2,32,6,720,16864,11,8,80,33)
HDS=(0,306,0,2,32,6,17584,2000,5,8,25,33)
HDS=(0,1,0,1,1,0,0,0,5,8,17,10) a dummy definition
TI=A,TD=E,TC=40,SPT=18,TSR=0,GPL=2,DDSL=17,DDGA=2
TI=A,TD=E,TC=40,SPT=18,TSR=0,CPL=2,DDSL=17,DDGA=2

Note that the 8th sub-paraneter (vsc1) of HDS is the number of sectors
assigned to the data volume (NOT the ending sector number). Slot 3 has
been defined as a dummy (the vsc1 value = 0) to allow FREE to get to
slots 4 and 5.

3. The user has two Apparat 10 Meg drives and wants the system volume
on hard disk, 3 hard disk data volumes with slot 1 to contain all the
space of the 2nd drive. The definitions for slots 0 - 7 could be:

HDS=(0,306,0,4,32,0,0,5595,5,8,69,33)
HDS=(1,306,0,4,32,0,0,39168,26,8,94,33)
HDS=(0,306,0,4,12,0,5595,5595,5,8,69,33)
HDS=(0,306,0,4,32,0,11190,5595,5,8,69,33)
HDS=(0,306,0,4,32,0,16785,5595,5,8,11,33)
HDS=(0,306,0,4,32,0,22380,5595,5,8,69,33)
HDS=(0,306,0,4,32,0,27975,5595,5,8,69,33)
HDS=(0,306,0,4,32,0,33570,5595,5,8,69,33)

APPENDIX CC-13

4. FORMATTING YOUR HARD DISKS.

Hard disks must be formatted before they can be used with NEWDOS/80 Version
2.5 or any other DOS. Some hard disk manufacturers format their hard disks
before shipping the drive and have internal coding to bypass error sectors
automatically, and if this is the case, you may bypass this section on hard
disk formatting.

NEWDOS/80 Version 2.5 does not maintain an error sector table and assumes the
consecutive sectors that it can read from a hard disk are error free. Bad
(error) sectors must be hidden from NEWDOS/80. One way to do this is to
reduce the number of data sectors per track, allowing HDFMTAPP to write a
dummy sector over the bad spot on the track. Another way is to later define
(via PDRIVE) the data volumes such that the bad sectors are not part of any
data volume.

NEWDOS/80 DOS commands FORMAT or COPY with format do not actually format a
hard disk. The actual formatting must be done either by a stand alone program
or by a program that operates under NEWDOS/80 but does all of its own I/O to
the hard disk. NEWDOS/80 Version 2.5 provides the program HDFMTAPP to format
Apparat's and Tandy's hard disks for the Model I or III. The format program
for other types of hard disk drives must be supplied to the user by that hard
disk drive retailer.

Formatting a hard disk destroys all information on that hard disk. If you
must re-format a hard disk, be sure to extract as much valued information
from that hard disk (you may use program HDBACKUP) as you can before
re-formatting.

Though we recommend that you format the hard disk drive before use with
NEWDOS/80 so that you will be made aware of all the error sectors, a previous
format done for another DOS (such as done during the LDOS 5.1.3 hard disk
initialization) can suffice if there were no error sectors or you know where
they are for bypassing in your definition of data volumes using PDRIVE, and
if you know the parameters needed for PDRIVE's HDS parameter. If you elect to
do this, then bypass the rest of this section (on HDFMTAPP). An example where
you might want to do this is where you wish to share the hard disk between
one or more existing LDOS volumes and one or more NEWDOS/80 volumes, thus
allowing both LDOS and NEWDOS/80 to use the hard disk (though not both at the
same time and not the same data volumes).

To format an Apparat or Tandy Model I or III hard disk, assure the hard disk
drive is properly connected to the computer and power is on; then execute the
DOS command HDFMTAPP, proceeding as follows:

1. Reply the relative hard disk drive number. This is the same number
as hddn1 in the PDRIVE HDS parameter.

2. Reply the relative number of the first surface to be formatted.
When formatting an entire hard disk drive, this value is 0.

APPENDIX C C-14

3. Reply the number of recording surfaces to be formatted. When
formatting an entire hard disk drive, the value is the number of
recording surfaces the hard disk has (the RSC or TPC values discussed
earlier). For Apparat 5, 10 and 15 Meg hard disks, this value is 2, 4
and 6 respectively. For Tandy 5 Meg drives, this value is 4.

4. Reply the number of tracks per surface UPS or tps1) for this drive.
This is the same as the number of cylinders the drive has. For Apparat
hard disks, this value is 306. For Tandy 5 Meg hard disk drives, this
value is 153.

5. Reply the relative number of the first cylinder (the first track on
a surface) to be formatted. When formatting an entire hard disk drive,
this value is 0.

6. Reply the number of cylinders (number of tracks on each surface) to
be formatted. When formatting an entire hard disk drive, this value is
the same as given in #4 above.

7. Reply the track stepping rate code. Use a value of 15 here as we
are not too concerned with a slow stepping rate during formatting.

8. Reply your intended data sectors per track. The normal value here
is 32. The tracks supposedly have a capacity for 33 sectors per track,
but test have shown that many parity errors occur. Specifying 32
sectors per track does allow for one error sector per track to be
automatically specially encoded so that NEWDOS/80 will never see it.

9. Reply the sector interleave count. We recommend a value of 21 if
there are to be 32 sectors per track. This value allows time for the
DOS I/O routine, the transfer of the bytes on the cable to/from the
drive's buffer, the actual read/write of the sector by the drive, and 1
to 2 milliseconds for the user program to invoke the I/O for the next
sequential sector. This value of 21 is also optimal for the HDBACKUP
program, which is too slow as it is. Values 19 and 20 will work, but
allow much less time for the user program to turn the I/O around.
Values 22 to 30 allow the user more turn around time but slowly
decrease the number of I/Os per second that can be done. Values 0 - 18
allow too little time for the above functions and cause the hard disk
to wait till the next revolution (16.7 ms) for the next sector.

10. Reply N if you wish to restart the specifications again at step 1
above. Reply Y if the program is to start the format.

11. Once started, the formatting will proceed, blinking an asterisk in
the display upper right corner to indicate progress. If a track cannot
be formatted with the required number of sectors, an error will be
displayed giving the cylinder, head and number of error sectors above
and beyond the number implicitly allowed in step 8 above. A track that
has some error sectors and some good data sectors will have the good
sectors numbered from track relative sector 0 consecutively on up with
the higher numbered sectors for that track simply not there.

APPENDIX CC-15

12. During HDFMTAPP execution, holding down the up-arrow key causes the
program to terminate and the right-arrow key causes the program to
pause. After right-arrow, pressing ENTER causes the program to
continue. This pause/cancel function is useable only through the
keyboard matrix, not via remote terminals.

13. When the format is complete, the number of tracks with too many
errors will be displayed. If there are any such tracks, you SHOULD
reformat the hard disk using a lesser sectors per track value. ;lark
the resulting sectors per track value spt1 on a label on the hard disk
to remind you of what spt1 value MUST be used in all PDRIVE definitions
for data volumes on that drive. HOWEVER, when only a small number of
consecutive tracks have all the error sectors, you may decide to leave
the error sectors alone and define your volumes (via PDRIVE) in such a
way as to assure that the error tracks at not assigned to any volume
(i.e., ending one volume on the last sector of the first good track
preceding the bad track range arid starting another volume on the first
sector of the first good track following the bad track range). If the
error tracts are assigned to a volume, NEWDOS/80 will give SECTOR NOT
FOUND error when ever I/O is attempted to the a bad, non-existent
sector. NEWDOS/8O does not maintain any bad track or bad sector tables.

14. If all tracks have beer, formatted with the required number of
sectors, the hard disk is now ready for use by NEWDOS/80.

It is possible, due to the extensive specifications, for the HDFMTAPP program
to format just one track on the hard disk. This may be of interest to a few
users when a track has apparently gone bad and an attempt is to be made to
reformat just that one track.

5. MOVING NEWDOS/80 VERSION 2.5 TO THE HARD DISK.

Usually, you want to have slots 0 to 3 as hard disk volumes and still have
access to your two floppy disc drives. For this, it is necessary to operate
using the NEWDOS/80 Version 2.5 system volume, which must be volume 0, from
the hard disk. This section steps you through setting up NEWDOS/80 Version
2.5 to run from the hard disk. The hard disk is assumed previously formatted.

1. Be sure you know how to use the DOS command PDRIVE, especially with
the Hard Disk Specification parameter HDS.

2. Mount a copy of the NEWDOS/80 Version 2.5 hard disk system diskette
in floppy drive 0. This will be known as the system diskette as
different from the hard disk system volume which will be on the hard
disk.

3. Choose one of the system diskette's PDRIVE active slots whose
number is greater than one. For this example slot 2 will be used (the
SYSTEM option AL must be at least 3). If you choose a different slot
number, then use that number in place of 2 in the following discussion.

4. Using PDRIVE,0,2,A,HDS=----- define floppy system diskette PDRIVE
slot 2 with the specifications wanted for the hard disk system volume.

APPENDIX C C-16

5. Execute the DOS command:
COPY, 0,2,,FMT,CBF,USD

and respond to the requests for SOURCE and DESTINATION diskettes (even
though the destination is on a hard disk). GAT OVERFLOW error may occur
if the spg1 value for the destination is less that that of the source;
in which case you must increase the destination spg1 value.

6. Execute PDRIVE,2 to see the hard disk system volume's
specifications for the 10 slots defined on that volume. Note that the
definition for slot 2 has been duplicated in slot 0. This was done as a
normal part of the COPY done above. Don't confuse the specifications of
PDRIVE,2 which refers to system control data on drive 2, the intended
hard disk system volume, with those of PDRIVE,0 which refers to system
control data on drive 0, the floppy system diskette.

7. Using PDRIVE,2,----- define the PDRIVE specifications as you intend
for that volume to be used as the system volume (drive 0). Since
PDRIVE,2,2 has been duplicated as PDRIVE,2,0 in anticipation of that
hard disk volume becoming the system volume, you MUST now redefine the
PDRIVE,2,2 slot for another volume or by setting its vsc1 value to 0,
causing slot 2 to be undefined. The specifications for PDRIVE,2 slots
0 - 3 must be for hard disks volumes only. Definitions for the floppies
must be in slots 4 - 7 which correspond to the old drives 0 - 3
respectively. If one or more of the slots 4 - 7 are not used for
floppies, then they may be used for hard disk volumes, thus allowing a
maximum of 8 hard disk volumes to be active at any one time. Do not go
on to the next step until all PDRIVE,2 slots have been defined as you
will want them to be in the system operating from the hard disk, though
it is not necessary to change any of them except slot 2 and you should
not change slot 0. Remember, you cannot use PDRIVE parameter A when
doing PDRIVE,2 definitions as that volume is not the current system
volume.

8. Using SYSTEM,2,AL=xxx, specify the number of PDRIVE,2 slots to be
active. xxx must be between 1 and 8, and must be at least 5 if any
floppies are to be used.

9. The hard disk system volume now has the correct specifications, but
we need a hard disk boot diskette (also known in this section as the
boot diskette) to enable RESET (also known as BOOT), which must start
on floppy drive 0, to switch to the hard disk system volume. This
diskette must contain at least BOOT/SYS, DIR/SYS and SYS0/SYS, and must
have its PDRIVE slot 0 defined exactly as for the hard disk system
volume. So we proceed to do this.

10. If the system diskette's PDRIVE,0,1 specification is not identical
to that for PDRIVE,0,0, then make them so by executing the command:

PDRIVE,0,1=0,A

11. Assign an otherwise unused diskette as the hard disk boot diskette
and label it as such. Mount the boot diskette in floppy drive 1.

12. At this point, the system diskette is in floppy drive 0, the hard
disk boot diskette in floppy drive 1, and the hard disk system volume
is on the hard disk. Execute the DOS command:

FORMAT,1,,,,Y

APPENDIX CC-17

13. When done, execute to DOS command:
COPY,SYS0/SYS:2,:1

to move a copy of SYS0/SYS, the resident DOS, from the hard disk system
volume to the hard disk boot diskette. Since it is the first file
placed on the boot diskette, aside from BOOT/SYS and DIR/SYS, it will
automatically be placed in the proper place for RESET.

14. When done, execute: PDRIVE,1,0=2 to move the proper hard disk
system volume specification to the boot diskette's PDRIVE slot 0.

15. At this point, you may want to change the PDRIVE,0,2 and PDRIVE,0,1
definitions back to what they were before steps 3 and 10 above. This
step is optional.

16. Remove the system diskette from drive 0. Move the hard disk boot
diskette from drive 1 to drive 0 and press RESET. Computer execution
will read the boot sector and then the resident DOS, SYS0/SYS, from the
boot diskette in floppy drive 0 and then shift to the hard disk. You
may now take the hard disk boot diskette out of drive 0 or leave it in,
in which case it may be accessed via the PDRIVE slot 4 (used for floppy
drive 0 when the hard disk system is in use) if PDRIVE,0,4 is defined
for a floppy. The diskette can be accessed by user programs as drive 4.

You may use the hard disk boot diskette as a normal data diskette by copying
data files on to it. Remember though, it is the hard disk system's boot
diskette and its SYS0/SYS is the resident DOS that is loaded into main memory
at RESET time and remains there until the next RESET.

********* WARNING. A backup up of a hard disk boot diskette will not
transfer its booting-up-the-hard-disk capability unless the backup is
done using format 5 COPY with the BDU option.

The hard disk system volume is drive (slot) 0 when operating the system from
the hard disk. The hard disk system volume does NOT have to be positioned at
the beginning or a hard disk drive; in steps 4 and 5 above, you are allowed
to place the hard disk system volume where you wish on the hard disk.

The file SYS0/SYS on the hard disk boot diskette MUST remain exactly
identical to the SYS0/SYS on the hard disk system: volume. If you alter one,
you MUST alter the other. This is necessary because the hard disk system:
thinks its own SYS0/SYS is in the resident DOS area (4000H - 4CFFH and 0F900H
- 0FFFFH) at all times when actually it is the SYS0/SYS from the hard disk
boot diskette.

If you only have one floppy drive, then the following changes must be made to
the above procedure:

1. Step 10 above is excluded.

2. In step 11, do not mount the boot diskette into drive 1.

APPENDIX C C-18

3. In step 12, change the command to be FORMAT,0,,,,Y and perform
diskette mounts as requested where the SYSTEM diskette is the system:
diskette and the DESTINATION diskette is the boot diskette.

4. In step 13, change the command to be COPY,$SYS0/SYS:2,:0 Perform the
diskette mounts as requested where the SYSTEM diskette is the system
diskette, SOURCE diskette is the hard disk system volume and the
DESTINATION diskette is the boot diskette.

5. Replace step 14 with the following action. Enter SUPERZAP and at the
menu, reply CDS. Remove the system diskette from floppy drive 0, and
mount the boot diskette in floppy drive 0. Reply Y. Reply 2,2 for the
source drive and relative sector. Reply 0,2 as the destination drive
and relative sector. Reply 1 as the sector count. Press ENTER to return
to menu. Remount the system diskette in floppy drive 0. Reply EXIT to
exit SUPERZAP and return to DOS READY.

APPENDIX CC-19

6. DEFINING PDRIVE SLOTS FROM A VOLUME DEFINITION FILE.

The definition of hard disk volumes via PDRIVE is more difficult and more
critical than for floppy disk volumes. Therefore, it is recommended that the
user carefully plan out his/her allocation of hard disk space amongst the
various volumes and store the definitions (the HDS parameter part) into an
ASCII text file (called a data volume definition file) created and updated by
using either CHAINBLD or SCRIPSIT or both. Do this very, very, very carefully
as you can create havoc amongst your data if two or more data volumes share
the same hard disk sectors. Under NEWDOS/80 Version 2.5, you have great
flexibility in assignment of hard disk space to data volumes, but with this
flexibility comes complexity of definition.

Each record within the data volume definition file must start with a unique
but arbitrarily assigned identification integer. Following the integer must
be a comma followed by the intended PDRIVE definition excluding the initial
part of the PDRIVE command (the PDRIVE,dn1,dn2, portion) and the ,A (for
activation) as these parts of the PDRIVE command will be supplied by the
EXTPDRIV/BAS program.

Since each definition record within the data volume definition file starts
with an integer, you may imbed comments within the file as you like provided
the comment record does not start with an integer.

It is strongly recommended that you keep copies of the data volume definition
file on floppy diskettes in case that file on your hard disk becomes
unusable. Remember, this is your master copy of the hard disk space layout!

Assuming that you have carefully constructed your data volume definition
file, you may assign one or more of these definitions to the various PDRIVE
slots when needed by running the BASIC program EXTPDRIV/BAS.

1. The program will ask for the filespec of your volume definition file
and then open it.

2. The program will ask for the identification integer of the
definition to be used. Respond with an EXACT copy of the integer that
starts that definition's record in the file. The program will then
search the file for the record.

3. When found, the program will ask for the two numbers needed for the
PDRIVE,dn1,dn2,--- function. Respond with the two numbers separated by
a comma. The first number, dn1, (usually 0) specifies which data volume
contains the system control information, which will be changed by the
PDRIVE command. The second number, dn2, specifies which PDRIVE slot
definition is to be changed.

4. The program will then ask if slot definitions are to be activated
within the resident DOS (i.e., the ,A PDRIVE parameter). Reply Y if so;
N if not.

5. The program will then build the appropriate PDRIVE command and
execute the command via DOS-CALL. You will see the PDRIVE results
displayed.

APPENDIX C C-20

6. The program will then ask if there is another definition from the
same file to be applied. If you reply Y, the program returns to step 2
above. If you reply N, the program ends.

EXAMPLES of data volume definition file records:

1. 103,HDS=(0,153,0,4,32,6,0,2880,5,8,35,33)

2. 91,HDS=(1,153,0,4,32,6,1000,2000,0,8,0,33)

3. 44,TI=A,TD=E,TC=40,SPT=18,TSR=0,GPL=2,DDSL=17,DDGA=2

7. BACKING UP HARD DISKS TO DISKETTE:

Copies of user data stored on hard disk must be kept elsewhere in case the
hard disk crashes, a program malfunctions or a user goofs. Users MUST, from
time to time, make backup copies of valued data, the frequency of backup
depending upon how often the data changes and how valuable the data is.

NEWDOS/80 Version 2.5 provides the HDBACKUP (hard disk back up) function as a
way of saving files from the hard disk(s) to floppy diskettes, and a way of
restoring one, some or all of those files back onto the hard disk(s).

HDBACKUP saves by file rather than by full volume contents. It uses this
considerably slower technique because over 50% of the restores that are
eventually done involve only a selected set of files and not a full media or
data volute. Restores to a hard disk don't have to be the result of a hard
disk failure but more frequently are due to user mistakes or user program
malfunction logically damaging or destroying certain files, and the restore
should allow only the damaged files and their interrelated files to be
restored, leaving unchanged all other files on the hard disk(s) involved.
Unfortunately, saving by file requires more administrative consideration than
does saving by entire volume contents; so we hope the greater flexibility
will be worth it.

For purposes of HDBACKUP discussion, a backup is the content of the one or
acre diskettes used to contain the files copied from data volumes during the
execution of the HDBACKUP program's SAVE function. These diskettes must be
preformatted and, after being used by SAVE, cannot be read/written using
standard DOS functions; however, they can be read/written using SUPERZAP disk
(not file) mode.

In this discussion of the HDBACKUP function, a data volume refers to one of
the active hard disk data volumes defined via PDRIVE.

HDBACKUP/CMD is the program that (1) creates a backup containing specified
files from the various defined data volumes (as defined by PDRIVE) of your
system, (2) lists which files are contained within a backup and (3) restores
specified files from a backup to the various defined data volumes of your
system. HDBACKUP is the method under NEWDOS/80 Version 2.5 of backing up your
files from hard disk or diskette and, if necessary, restoring one, some or
all of those files back to the hard disk or diskette. Under the SAVE
parameter, HDBACKUP creates a backup that spans one or more diskettes. Under
the LIST parameter, HDBACKUP lists the filespecs of and errors associated

APPENDIX CC-21

with the files contained in the specified backup. Via the RESTORE parameter,
HDBACKUP copies specified files from the backup to specified data volumes of
your system.

The HDBACKUP SAVE function saves a file's contents, not its attributes.
Except for the file name, name extension, data volume number and, if NND not
specified, the logical record length, no other attributes of the file are
saved such as passwords, protection level, etc. SYSTEM files are not SAVEd.
The user is responsible for backing 4p system files to regular diskettes
using the COPT' command; normally it is sufficient to simply maintain, copies
of your original NEWDOS/80 Version 2.5 Hard Disk System diskette and your
regular NEWDOS/80 Version 2 System diskette. If the NND parameter is
specified, system files included in the INCLUDE list are copied, but are no
longer marked as system files.

Provided the NND parameter is specified, the HDBACKUP function is designed to
attempt to run with TRSDOS-like DOSS other than NEWDOS/80 Version 2.5. Via
the NED parameter, you must inform the HDBACKUP/CMD program of certain values
for that DOS.

The HDBACKUP program requires passwords be disabled, as standard file OPENs
are done without passwords in the filespecs. If passwords cannot be disabled
in the current system, the passwords must be taken off the files being backed
up. SYSTEM option AA=N disables passwords in NEWDOS/80.

The HDBACKUP program requires, unless the NND parameter is specified, that
all volume directories be named DIR/SYS.

Usually after the user has responded to a request, HDBACKUP displays an * to
indicate that it is no longer waiting for an operator response.

HDBACKUP blinks an * in the upper right corner of the display screen to let
you know that is preceding in an orderly fashion. The speed of the blinks
will vary due to the different functions.

The RESTORE function of HDBACKUP takes a very long time to initialize (in one
test of 3444 files, it took 30 minutes). This extra initialization (1)
performs KILLs if RENEW specified, (2) creates all new files, (3) CLOSES the
files to store the new EOF and release any excess disk space on the data
volume, (4) if NND not specified, writes the last sector of each file to
allocate any needed disk space and (5) if NND not specified, updates the
logical record length in the directory.

The HDBACKUP/CMD program expects the diskettes used for the backup to already
be formatted. The program will write over the entire diskette; after SAVE,
the diskette will not have a directory. The program will not tolerate a bad
sector when writing to the backup diskettes. If a sector is bad, you have
three options: (1) retry the write, (2) cancel the entire SAVE function, or
(3) restart the SAVE function at the beginning of the current backup
diskette. If you choose option 3, you will be asked for the current backup
volume again; you should then (and not before) mount a different previously
formatted diskette (remember to label it properly) and place the other
diskette in your bad diskette collection.

APPENDIX C C-22

The HDBACKUP command sequence is:

HDBACKUP
fc1
PRINT
NND=(filespec1,r/n,spg1,gpl1,spv1)
BSN=list1
TITLE=title1
DATE=date1
TIME=time1
SVL=list2
RVL=list3
SLOW
SKIP
RENEW
MAXERRS=ec1
TEST
INCLUDE
EXCLUDE
*END

HDBACKUP invokes the HDBACKUP/CMD program. HDBACKUP must be the only
parameter on the first command line (the command line used by DOS to invoke
the program). This program then displays the cursor and waits for the user to
input subsequent command lines. Command parameters are processed until the
*END parameter is encountered. There must not be extraneous characters within
a command line. A command line may contain multiple parameters separated by
commas, but a parameter must be fully contained within a command line. A
command line is limited to 79 characters in NEWDOS/80 and 63 characters for
most other DOSs.

The user will generally build the command lines and the file specifications
for INCLUDE or EXCLUDE into a CHAIN (aka DO) file as it is strongly
recommended that HDBACKUP commands be constructed very carefully. Though
CHAINBLD will work, it is recommended you build your chain file via a word
processor, storing the resulting file as an ASCII file.

**** Warning, be sure that the chain file has no extraneous characters
after the end-of-line character for the SEND statement; otherwise
subsequent responses needed for the HDBACKUP execution will receive bad
data.

The TEST parameter was included to allow the user a 'dry' run to test the
workability of the command parameters. If you don't know what your are doing,
gain some familiarly by using the TEST parameter before doing a live run.
Remember, you can't test a RESTORE until you have a backup to test with.

**** Warning, SAVE with TEST does write backup control information on
the backup's 1st diskette; be sure that diskette is intended for a
backup.

fc1 fc1 must be the first parameter after HDBACKUP. fc1 specifies the
function to be performed which is one of the following:

APPENDIX CC-23

1. SAVE Anew backup is created having title, date and time as
specified by the TITLE, DATE and TIME parameters. The files specified,
either explicitly or implicitly, are copied from the specified data
volumes to as many backup diskettes as necessary. Parameters BSN, SVL
and *END are required. Optional parameters are PRINT, NND, TITLE, DATE,
TIME, SLOW, SKIP, MAXERRS, TEST, INCLUDE and EXCLUDE. If one of TITLE,
DATE or TIME is not specified, the HDBACKUP program will ask for that
parameter. If NND is specified, INCLUDE must be specified.

2. LIST This function lists the files contained within the
specified backup and includes their associated error sector numbers.
Required parameters are BSN and *END. Optional parameters allowed are
PRINT, NND, TITLE, DATE and TIME. The listing starts with the backup's
name, date, time, file count and error count. Then for each file in the
backup's table of contents, the following are listed:

1. The filespec for the file.

2. If the file has been deleted from the backup table of
contents, '***** DELETED *****' is displayed and steps 3 - 6 are
bypassed.

3. The file's EOF value in xxx/yyy format where xxx is the
relative sector within the file and yyy the relative byte within
the sector.

4. The file's logical record length, 1 - 256.

If NND specified during the SAVE that made this backup, the
record length may or may not be correct if the file's
record length prior to the SAVE was not 256. This occurs
under NND as HDBACKUP does not get the record length from
the directory but records whatever record length appears in
the FCE after OPEN. Normal NEWDOS/80 operations do not use
the file's record length from the directory, but many users
want it correct anyway. If a file's logical record length
was changed during the SAVE and RESTORE, the user may
correct it by using the LRL parameter of ATTRIB (see
regular NEWDOS/80 Version 2 ZAP 007 (Model I) or ZAP 004
(Model III).

5. The location within the backup of the file's header sector,
expressed as a backup volume number and a relative sector within
that volume. This is of interest only to those viewing/updating
the backup via SUPERZAP. Volumes (diskettes) of a backup are
numbered consecutively from 1, not 0.

6. If the file has any error sectors, they are listed each in the
decimal format:

sssss/ee/vvv/rrrrr

where:

1. sssss is the sector's relative number within the file.

APPENDIX C C-24

2. ee is the DOS error code.

3. vvv is the number of the backup volume containing the
error sector

4. rrrrr is the sector's relative number within the backup
volume.

3. RESTORE The files specified, either implicitly or explicitly, are
copied from the backup to the specified data volumes. Required
parameters are BSN, RVL and *END. Optional parameters allowed are
PRINT, NND, TITLE, DATE, TIME, SLOW, SKIP, TEST, RENEW, INCLUDE and
EXCLUDE.

PRINT This parameter informs the HDBACKUP program that display
information is to be sent to the printer as well as the display. If PRINT is
not specified, only the display will be used. If PRINT is specified, the
program will display WAITING ON PRINTER, and then, if the printer is not
ready, the program will hang.

NND=(filespec1,r/n,spg1,gpl1,spv1) This option specifies that the Disk
Operating System (the DOS) is not WEWDOS/80 Version 2.5, though it can be. If
NND is specified, the following hold:

1. SLOW is implied.

2. For SAVE, INCLUDE is required.

3. NND must be specified immediately after fcl and before BSN.

4. For RESTORE, the pre-allocation of needed file space during
initialization is not done; an out-of-space error will not be detected
until the file is actually restored.

5. file logical record lengths recorded in table of contents during
SAVE or in the data volume directory during RESTORE may be wrong if
they were not 256.

HDBACKUP is designed to run with NEWDOS/80 Version 2.5, but users initially
may have their hard disk data under a different operating system, thus
creating a dilemma, as NEWDOS/80 cannot process directories for other DOSs.
Recognizing this as potentially a serious problem, an attempt (via the NND
parameter) has been made to allow HDBACKUP to run under another DOS using
faked extents in the FCB used for backup diskette I/O. This attempt will not
work with a DOS that determines a diskette's characteristics from the
diskette itself (as HDBACKUP writes over the entire backup diskette) or which
automatically changes a drive's specification when an error is encountered.
So far, the only successful tests have been (1) with Tandy's Model III Hard
Disk Operating System (LDOS 5.1.3) using single sided, double density, 40
track drives as the backup drives specified in the BSN parameter with
NND=(TEMPFILE:0,N,6,3,720), and (2) with Tandy's Model I Hard Disk Operating
System (LDOS 5.1.3) using single sided, single density, 35 track drives as
the backup drives specified in the BSN parameter with
NND=(TEMPFILE:0,N,5,2,350). Apparat does not plan to test under the other
DOSs or other configurations, and Apparat reserves the right to withdraw the
NND parameter and all support for it at any time and without notice.

APPENDIX CC-25

If using HDBACKUP with the NND parameter does not work with your other DOS,
the user will have to find some other way of offloading the files from hard
disk under the other DOS and reloading them under NEWDOS/80 Version 2.5.

***** Warning!!! Before using HDBACKUP to offload files under a DOS that is
not NEWDOS/80 and then reloading the files to hard disk under NEWDOS/80, the
user should offload the valued files to diskettes using the other DOS's
normal backup procedures. This provides the user with a second backup source
should the conversion to NEWDOS/80 fail.

When using the NND option, certain extra information MUST be provided to the
HDBACKUP program. If you don't know what these values are, call the
distributor for that DOS; don't call Apparat.

filespec1 is the filespec of new or existing file that HDBACKUP can
write one sector to in order to determine a correct FCB to be used for
backup diskette I/O. HDBACKUP will write garbage into that one sector
and will not CLOSE the file. The file filespec1 must be for a file
within a volume that is already mounted when HDBACKUP begins execution;
further, for some DOSs, it may be necessary that the file be on a
diskette with the same spg1, gpl1 and spv1 characteristics specified in
this NND parameter. The diskette can be mounted on a drive specified in
BSN below as HDBACKUP will conclude its use of file filespec1 before it
asks for the first backup diskette.

r/n is one character, either R or N. R is specified if the EOF
field of FCBs (the File Control Block in main memory, not the directory
FDEs) for this DOS are in Relative Byte Address format (such as all
NEWDOS versions and Model III TRSDOS 1.3). N is specified if the EOF
field of the FCBs for this DOS are in Next Record Address format (such
as LDOS (regular and hard disk), Model I TRSDOS 2.3 and Model III
TRSDOS 1.1)

********* The choice of R or N is critical. Choosing the wrong
value will cause every file not ending on a sector boundary to be
assigned the wrong EOF in the backup, thus making the file one
sector too long or too short. Further, reportable errors may
occur.

Once again, the NEWDOS author apologizes for having brought
Relative Byte Addressing to the TRS-80 world (the FCBs, not the
directories) with the NEWDOS release in March, 1979, thus causing
the confusion between RBAs and NRAs (Next Record Addressing). NRA
was the standard at that time and has remained the LDOS standard
(TRSDOS on the Model III changed to RBAs in July, 1982). NEWDOS
shifted to and remains with RBAs because that method is the more
reliable method for arbitrary random disk I/O.

spg1 is the number of sectors per granule for this DOS for the
backup diskettes that will be mounted on floppy drive(s) specified in
BSN below. (LDOS Hard Disk System uses spg1 = 5 for single density 5
inch diskettes and spg1 = 6 for double density).

gpl1 is the number of granules per lump for this DOS for the
backup diskettes that will be mounted on the floppy drive(s) specified
in BSN below. This is also known as granules per cylinder and is the

APPENDIX C C-26

number of bits per byte used in the GAT sector to account for granule
allocation. LDOS Hard Disk System uses gpl1 = 2 for single sided single
density 5 inch diskettes, gpl1 = 4 for double sided single density,
gpl1 = 3 for single sided double density diskettes and 6 for double
sided double density.

spv1 is the number of sectors per backup diskette. This is the
total number of sectors on a diskette (720 for single sided, double
density 40 track 5 inch diskettes, 350 for single sided, single density
35 track 5 inch diskettes, 1440 for double sided, double density 40
track 5 inch diskettes). Whatever the number, the DOS must be capable
of doing I/O for that number of sectors per diskette.

HDBACKUP/CMD may be moved to another DOS via the following steps:

1. Under NEWDOS/80 Version 2.5, execute LMOFFSET. Respond D. Respond
HDBACKUP/CMD. Respond new load address = 7000. Respond N to request
appendage. Record the new start, end and entry address values displayed
(will be used in step 4 below). Respond <ENTER> to indicate load point
not being changed again. Respond N to keep DOS enabled. Respond D.
Respond XXX/CMD:0 to write the modified module back to disk. Respond N.
Respond PI again. You should now be back at DOS READY.

2. Execute the DOS command LOAD,XXX/CMD:0. This loads the
load-offsetted HDBACKUP program created in step 1 into main memory from
where it will be written to the other DOS's diskette in step 4 below.

3. Load the other DOS diskette into drive 0 and press RESET to bring up
that DOS. Be sure that this DOS does not clear user memory upon coming
up.

4. Use the DUMP command for that DOS to store onto that DOS's disk the
HDBACKUP/CMD program loaded into main memory in step 2. The DUMP
command will need the start, end and entry addresses recorded in step
1. See that DOS's manual for explanation of the DOS command DUMP. For
LDOS, this command will be:

DUMP HDBACKUP/CMD:0 (START=X'start',END=X'end',TRA=X'entry')

where start, end and entry are the hexadecimal addresses recorded in
step 1 above.

5. If that DOS's DUMP does not allow the filespec HDBACKUP/CMD:0, use
what it will allow and then change the file's name via RENAME.

6. The HDBACKUP program is now ready for execution on that DOS.

APPENDIX CC-27

BSN=list1 The Backup Slot Number specifies either one or two slot numbers
(if two, list1 must be enclosed in parenthesis) of the slots (PDRIVE active
volumes) to be used for reading/writing the backup diskettes.. These slots
must be defined in PDRIVE as floppy disk drives. None of the backup slot
numbers may be included in the volume numbers listed in the SVL or RVL
parameters. If two slot numbers are specified, they must have the same PDRIVE
definition. If only one slot is specified, all backup diskettes will be
mounted as needed using that one drive. If two slot numbers are specified,
the backup's volume 1 is left mounted on the first drive throughout the
HDBACKUP function and the second drive is used for the other volumes. Since
backup volume 1 is frequently referred to or updated during the SAVE or
RESTORE, assigning two slots (drives) greatly reduces operator actions. If
you only have two drives, run the system from the hard disk so that floppy
drive 0 is free to be used as a backup drive.

TITLE=title1 title1 is the 0 to 48 printable character title of the
backup. For SAVE, this title is assigned to the backup; if not specified in
the command lines, the program will ask for it. For LIST and RESTORE, an
error will be displayed if TITLE is not specified or title1 does not match
that of the backup; the user may elect to use the backup anyway. Where TITLE
is specified in a command line, it must be the last parameter of that line as
title1, even if over 48 characters, is considered to be the rest of the line;
the excess characters are ignored. During SAVE, when a backup diskette is
first asked for, the program will reject the diskette if it has been used for
a previous backup with the same title, date and time (as it may really be an
earlier volume of this backup).

DATE=date1 date1 is the backup's date in nun/dd/yy format. For SAVE, this
date is assigned to the backup; if DATE is not specified, the operator will
be asked for it. For LIST and RESTORE, an error will be displayed if DATE is
not specified or date1 does not match the backup's date, but the user may
elect to use the backup anyway.

TIME=time1 time1 is the backup's time in hh:mm:ss format. For SAVE, this
time is assigned to the backup; if TIME is not specified, the operator will
be asked for it. For LIST and RESTORE, an error will be displayed if TIME is
not specified or time1 does not match the backup's time, but the user may
elect to use the backup anyway.

SVL=list2 This Save Volume List parameter is required for and used only if
the function is SAVE. list2 specifies the volume(s) whose files are to be
copied to the backup during SAVE. If list2 has more than one sub-parameter,
list2 must be enclosed in parenthesis. list2 consists of one or more sub-
parameters, separated by comas, of the type:

vn1 specifies the number of an active slot whose data volume files,
as restricted by INCLUDE or EXCLUDE, are to be copied to the backup.
vn1 may have integer values 0 to xxx, where xxx is one less than the
SYSTEM AL parameter. vn1 must not equal a slot number specified in the
BSN parameter.

RVL=list3 This Restore Volume List parameter is required for and used only
if the function is RESTORE. This parameter specifies (1) volume numbers whose
files in the backup, as restricted by INCLUDE or EXCLUDE, are to be restored
and (2) optionally, the data volume to receive the files of another volume.

APPENDIX C C-28

If list3 has more than one sub-parameter, list3 must be enclosed in
parenthesis. list3 consists of one or more sub-parameters, separated by
commas, of the type:

vr2=vn1 The files contained in the backup for volume vn1, as
restricted by INCLUDE or EXCLUDE, are copied to volume vn2. Volume
numbers in the INCLUDE or EXCLUDE list refer to vn1, not vn2. If vn2
and vn1 are the same volume number, the vn2=vn1 sub-parameter may be
written as Just vn1. vn2 may have integer values 0 to xxx where xxx is
one less than the SYSTEM; AL parameter. vn2 must not equal a slot
number specified in the BSN parameter.

SLOW This option can only be used with NEWDOS/80 and specifies that
the HDBACKUP program is NOT to use its faster diskette I/O when
reading/writing the backup (not the data volumes) diskettes. SLOW is implied
by NND. Normally, NEWDOS/g0 Version 2.5 uses a faster mode of backup diskette
I/O in the hope of increasing the speed of SAVE and RESTORE by 20-40. SLOW
should be specified only if the fast I/O appears to actually run slower than
normal diskette I/O. You can study this by timing the time to read or write a
backup diskette, preferably a volume other than backup volume 1.

SLIP During HDBACKUP processing when an error is encountered and the
operator would normally have a 'SKIP' option allowing processing to continue,
if the SKIP command parameter was specified, the SKIP option will
automatically be assumed. Normally, this option will not be specified;
however, there are times when a SAVE or RESTORE must accomplish what it can
despite errors. For example, if part of a hard disk has gone bad and the disk
is to be sent to the repair shop where it may or may not retain its current
data, it may be important to assure that whatever data can be retrieved, is
retrieved with the problem of restructuring bad files addressed later.

RENEW This option is used only with RESTORE. During HDBACKUP
initialization after the files to be restored have been determined, a KILL is
issued to the destination volume for each file that is to be restored. If the
file did not exist on the destination volume, the KILL does nothing. Normal
RESTORE initialization will then recreate the files on the destination
volumes. The purpose of RENEW is to reallocate file space in, hopefully, less
fragmented units (which can increase the efficiency of programs using these
files); RENEW should only be used when all, or almost all, files of a data
volume are being restored.

MAXERRS=ec1 ec1 is the number of errors the backup is to provide for in
its error table. The default value is 640 with 6400 the maximum ec1 value
allowed. MAXERRS is used only in the SAVE function.

TEST This option allows initialization processing to occur, including
backup control information writes. When the initialization is done, HDBACKUP
terminates with 'TEST COMPLETED' error. TEST allows the user to test the
command parameters, including the INCLUDE or EXCLUDE lists.

*** Warning, TEST with SAVE writes control information to the backup's
first diskette; this is necessary for a good test.

INCLUDE and EXCLUDE INCLUDE and EXCLUDE are mutually exclusive keywords.
Each must terminate the current command input line. Subsequent command lines
until but not including the *END command line compose a file list with each

APPENDIX CC-29

line specifying either a volume number preceded by a colon (i.e., :3) or the
filespec, without passwords, of a file to be INCLUDEd or EXCLUDEd. The number
of volume numbers or filespecs allowed in a file list is limited by computer
main memory constraints but is over 1500.

If the command line consist solely of a volume number, then all files for
that volume are INCLUDED or EXCLUDED.

All volume numbers in the INCLUDE or EXCLUDE list must refer to a vnl volume
number specified in the appropriate SVL or RVL parameter.

INCLUDE and EXCLUDE are optional keywords (except for SAVE with NND). If
neither is specified, HDBACKUP will assume inclusion of all the files for the
vn1 volumes specified in the SVL or RVL parameter.

INCLUDE Only the files specified in the file list are included in the
SAVE or RESTORE. If a file in the list does not exist, an error comment
will be listed, and the operator given the option of bypassing the
file.

EXCLUDE The files specified in the file list are excluded from the SAVE
or RESTORE; all other files of the vn1 volumes specified in the SVL or
RVL parameter are copied. If a file in the list does not exist on the
specified data volume (SAVE) or the backup (RESTORE), no indication is
given to the operator.

*END This required parameter ends the HDBACKUP command specification.

INTERNAL STRUCTURE OF THE BACKUP:

For those users interested, this section will show the structure of a backup.
Some users may find this description helpful in repairing a backup using
SUPERZAP.

Each volume (diskette) of a backup has a volume header sector as the
diskette's first sector. The header sector for volume 1 is the most important
and is used by RESTORE and LIST to access backup control information. The
headers for the other volumes contain roughly the same information, and are
used during RESTORE to verify that you have mounted the correct volume and by
SAVE to verify that you don't mount as a new volume for this SAVE a volume
that has already been used in the SAVE. The user must remember that a file's
sectors can span many backup volumes and must allow for the volume header
records when computing where a particular sector of a particular file is
within the backup. The contents of the backup volume header sector are:

1. 48 byte backup title.
2. 8 byte backup data in mm/dd/yy format.
3. 8 byte backup time in hh:mm:ss format.
4. 2 byte count of sectors for the table of contents.
5. 1 byte count of sectors for the error table.
6. 2 byte count of files in the table of contents.
7. 2 byte count of number errors allowed during SAVE.
8. 2 byte count of sectors per backup volume.

APPENDIX C C-30

9. 2 byte value = this diskette's volume number.
******** valid only for volume 1:

10. 1 byte of control bits:
bit 7 = 1, the SAVE is complete.
bits 6 - 0, undefined and reserved, must be 0.

11. 2 byte count of errors in error table.
12. 2 byte count of volumes for this backup.
13. 3 byte backup total sector count.

14. remainder of sector's bytes are 00H.

On backup volume 1, the table of contents sectors immediately follow the
volume header sector. Each sector contains eight 32 byte file entries of the
form:

1. 3 byte file name, padded on right with blanks.
2. 3 byte file Filename extension, padded on right with blanks.
3. 1 byte data volume number.
4. 3 byte file EOF in FBA format.
5. 1 byte logical record length (0=256). Not necessarily valid if NND
specified during SAVE.
6. 3 byte relative sector number within the backup of the file's
header sector.
7. 2 byte relative entry number of this entry within the table of
contents.
8. 1 byte control bits:

bit 7 = 1, this table of contents entry is used.
bit 6 = 1, this file is active.
Bit 7-6 = 10, file has been deleted from the backup. Actually some
of it may still be there, but LIST and RESTORE ignore it.
bits 5 - 0, undefined and reserved, must be 0.

9. The remainder of the 32 byte entry are bytes 00H.

The error table sectors immediate follow the table of contents. Each sector
has 64 entries of the form:

1. 1 byte containing the DOS error code plus 40H. If the byte is 00H,
the error has either been corrected by the user or he/she wants it
ignored.

2. 3 byte relative sector number within the backup of the file sector
in error. If the error is corrected or to be ignored, this value must
be set to 0.

The remainder of the backup is file data with each file's sectors preceded by
a file header record. If a file's EOF is zero, then only the file's header
record will appear. The user must remember that where a file's sectors flow
onto the next backup volume, the first sector on that volume with be the
volume's header sector, not a file sector. The format of a file header is:

1. The first 22 bytes are an exact copy of the first 22 bytes of the
table of contents entry for this file, but with none of the changes to
the-t entry after it was initially created. During RESTORE, these 22
bytes of the file header must match the 22 bytes from the table of
contents.

APPENDIX CC-31

2. Each of the remaining bytes of the file header sector contains the
ones complement of its relative location in the sector. This makes it
easier to recognize a file header should it be necessary to search for
it.

HDBACKUP EXAMPLES:

1. HDBACKUP
SAVE,BSN=(4,5),SVL=(0,1,2,3),*END

This is a copy of user files from hard disk data volumes 0, 1, 2 and 3 to a
backup whose diskettes will be mounted on the floppy drives associated with
slots 4 and 5 (assumed defined for floppy drives 0 and 1 respectively), with
backup volume 1 remaining on slot 4's drive and the other backup volumes
requested on slot 5's drive as needed. The user must have on hand enough
pre-formatted diskettes for the needs of the backup. Since slots 4 and 5 are
the access to floppy drives 0 and 1, we know that the hard disk system is
being run from the hard disk.

2. HDBACKUP
RESTORE,BSN=(4,5),RVL=(0,1,2,6=3),*END

This is a copy of user files from a backup to data volumes 0, 1, 2 and 6. The
backup diskette volumes will be mounted on the drives for slots 4 and 5 as
described in the above example. All files in the backup are copied, but the
files that originally came from volume 3 are actually written to volume 6
instead.

3. HDBACKUP
SAVE,BSN=1,SVL=(2,3,4,5,6,7)
EXCLUDE
XXX/DAT:4 YYY/DAT:6,*END

This is a copy of all user files from hard disk data volumes 2, 3, 4, 5, 6
and 7 to backup diskettes which will all be mounted as needed on the floppy
drive 1. File XXX/DAT of volume 4 and file YYY/DAT of volume 6 will not be
copied to the backup. Since BSN=1 was used for the backup floppy drive, we
know the system is being run from a system diskette in floppy drive 0.

4. HDBACKUP
LIST,BSN=1,PRINT,*END

The contents of the backup's table of contents is listed on both the display
and the printer.

5. HDBACKUP
SAVE,BSN=(4,5),SVL=(1,2),INCLUDE
ACCTPYBL/DAT:1
ACCTRVBL/DAT:1
PAYROLL/DAT:2
INVENTRY/DAT:2
*END

A backup is made consisting only of the 4 files specified in the INCLUDE
list. In this installation, the burden of making backups of valued files has
been placed on the individual users, in this case, accounting.

APPENDIX C C-32

6. HDBACKUP
SAVE,NND=(TEMPFILE:0,N,6,3,720),BSN=(4,5)
SVL=(0,1,2,3),INCLUDE
FILE001:0
FILE002:0
FILE003:1
and so on through
FILE999:4
*END

In this example, the HDBACKUP/CMD program has been previously moved to the
LDOS Hard Disk Operating System (in the manner described at the NND
discussion). The HDBACKUP runs under LDOS 5.1.3 and dumps the specified files
from volumes 0, 1, 2 and 3 to 4 backup whose diskettes have all been
preformatted as single sided, double density, 5 inch 40 track (with spg = 6,
gpl = 3 and spv = 720). After the hard disk has been reinitialized for
NEWDOS/80 Version 2.5, the HDBACKUP program under NEWDOS/80 (without the NED
parameter) can be used to RESTORE the files from the backup to the hard disk.

When NND is specified for a SAVE, such as above, an INCLUDE list must be used
to inform the HDBACKUP program of which files to copy to the backup, as the
HDBACKUP program does not read the non-NEWDOS/80 directories.

This example could be used for single sided, single density 35 track backup
diskettes under LDOS 5.1.3 on the TRS-80 Model I by using replacing the NED
parameter with NND=(TEMPFILE:0,N,5,2,350). If 40 track diskettes are used,
replace 350 with 400.

The TEMPFILE:0 filespec used in this example is just our choice of a filespec
for this example; you are free to use any filespec you wish so long as it
conforms to the specifications given for the END parameter.

INDEX1

Index

– A –

ACC 2-4
alpha 10-1
alphanumeric 10-1
APPEND 2-2
ASC 2-4,2-19
ASE 2-4,2-19
ASPOOL 5-3,6-19
 activation 6-21
 initial setup 6-19
Asychronous Execution 2-4
ATTRIB 2-3
AUTO 2-5

– B –

BASIC MODULES 5-2
BASIC2 2-5
BAUD 2-44
BDU 2-13
bit 10-1
BLINK 2-5
BOOT 2-6,10-1
BOOT/SYS 5-1,10-1
BREAK 2-6,12-2
buffer 10-1
byte 10-1

– C –

CBF 2-14
CHAIN 2-6,4-7
CHAINBLD 5-3,6-16
chaining 10-1
CHAINTST 5-3
character 10-1
CHNON 2-7
CFWO 2-14
CLEAR 2-8
CLOAD 7-1
CLOCK 2-9,3-11
CLOSE 3-7,10-2,A-9
CLS 2-9
CMD 7-8
 A 7-8
 B 7-8
 BREAK 7-1
 C 7-8
 D 7-9
 E 7-9
 F 7-9
 DELETE 7-13
 ERASE 7-12
 KEEP 7-12
 POPN 7-12

 POPR 7-12
 POPS 7-12
 SASZ 7-12
 SS 7-14,12-9
 SWAP 7-13
 I 7-10
 J 7-10
 L 7-10
 O 7-10,7-14
 P 7-10
 R 7-10
 S 7-10
 T 7-10
 X 7-10
 Z 7-10
doscmd 7-11
COPY 2-9,12-4,12-9
CREATE 2-18
CVD 8-20
CVI 8-20
CVS 8-20

– D –

DATE 2-19,3-11
DDGA 2-15
DDND 2-12
DDSL 2-15
DEBUG - 123 2-20,4-1,3-3,12-2
DEC 10-2
DFG - MINI-DOS 4-6
DFO 11-8
DI 7-4
DIR 2-20
DIRCHECK 5-3,6-12
directory 12-2,10-2
Directory Structure 5-4
DIR/SYS 5-1,10-2
DISASSEM 5-3,6-5
DISK BASIC 7-1,8-1
 activating 7-2
 command truncation 7-4
 direct commands 7-3
 enhancements 7-1
 I/O enhancements 8-1
 file types 8-1
 module overlays 7-1
DO 2-22,4-7
DOS 10-2
DOS-CALL 4-12,3-4,10-2
DOS command (doscmd) 10-2
DOS ROUTINES 3-1
DOS SYSTEM MODULES 5-1
DPDN 2-10
DU 7-4
DUMP 2-22

INDEX 2

– E –

EDTASM 5-3,6-14
EDIT direct commands 7-1,7-3
 / or shift up-arrow 7-3
 ; or shift down-arrow 7-3
 . 7-3
 , 7-3
 : 7-3
 @ 7-3
 up-arrow 7-3
 down-arrow 7-3
EOF 10-3
EOL 10-3
EOM 10-3
EOR 10-3
EOS 10-3
ERROR 2-24,3-2
error messages 9-1,7-1
 DOS 9-1,7-1
 BASIC 9-2,7-2
extent element 10-3

– F –

fan 10-3
FCB 5-9,3-9,3-10,10-3
FDE 5-6,10-3
FF FILE 8-10,10-3,A-39,B-5,B-6,B-7
FI FILE 8-10,10-4,A-45,B-15
FIELD ITEM FILE 10-4
file 10-4
file item 10-4
filearea 10-4
filespec 10-4
FILE TYPE (ft) 8-10
 FI 8-10,A-45
 FF 8-10,A-39
 MI 8-10,A-35
 MF 8-10,A-30
 MU 8-10,A-20
FILE POSITIONING (fp) 8-3,10-5,A-1
FIXED ITEM FILE 8-7,10-4
FMT 2-12
FORMAT 2-24,12-9,10-4
FORMS 2-26
FPDE 5-7,10-5
FREE 2-27
FXDE 5-9,10-5

– G –

GAT sector 5-5,12-2,10-5
GET 8-12,A-10
granule 10-5

– H –

hash code 10-5
hexadecimal 10-5

HIMEM 2-27,12-8,10-6
HIT sector 5-6,10-6

– I –

I/O error recovery 8-19
I/O link or path 10-6
ILF 2-14
IGEL 8-4,10-6
IGEL expression 8-5,10-6
IGELSN 10-6
item group 10-7

– J –

JKL 2-27,4-13

– K –

KDD 2-13
KDN 2-13
KILL 2-28

– L –

LC 2-29
LCDVR 2-29
len 10-7
LIB 2-30
LINES 2-26
LIST 2-30
LMOFFSET 5-3,6-9
LOAD 2-31,3-7,7-4
 V option 7-4
LOC 8-18,A-18
LOCK 2-3,2-40
LOF A-17
logical record 10-7
Lower Case Suppression 7-8
LRECL 10-7
LRL 2-18
LSET 8-20
LUMP 12-2,10-7

– M –

MARKED ITEM FILE 8-7,10-7
MDBORT 2-31
MDCOPY 2-32
MDRET 2-32
MERGE 7-5
MF FILE 8-10,10-7,A-30,B-12,B-14
MI FILE 8-10,10-7,A-35,

B-14,B-15,B-17
MINI-DOS - DFG 4-5
MKD$ 8-20
MKI$ 8-20
MKS$ 8-20
ms 10-7
MU FILE 8-10,10-7,A-20 ,B-2,

B-3,B-4,B-9,B-10,B-11

INDEX3

– N –

null 10-7
null character 10-8
null string 10-8
NDNW 2-12
NDN 2-13
NDPW 2-12
NFMT 2-12
NOWAIT 2-44

– O –

ODN 2-1 2
ODPW 2-14
OPEN 8-9,3-5,3-6,9,10-8,A-6

– P –

PARITY 2-44
partial record I/O 10-8
PAUSE 2-33
PDRIVE 2-33,12-2
 A 2-37
 DDGA 2-37
 DDSL 2-37
 GPL 2-37
 SPT 2-37
 TC 2-36
 TD 2-36
 TI 2-34
 TSR 2-37
PFST 2-25
PFTC 2-25
PRINT 2-39
print/input file 10-8
PROT 2-3,2-40
PSEUDO FIELD 8-17
PURGE 2-41
PUT 8-14,A-13

– R –

R 2-41
RBA 12-1,10-8
REC 2-18
REF 7-7
REGISTRATION 1-1
REMBA 8-16,10-8
REMRA 8-16,10-8
RENAME 2-42
RENEW 7-17
RENUM 7-5
Reporting errors 11-1,11-2
reset/power-on 10-8
ROUTE 2-42,12-8
RSET 8-20
RUN 7-4
 V option 7-4
RUN-ONLY 7-2,7-8

REF 2-40

– S –

sector 10-9
SETCOM 2-44
SN 2-13
SOR 10-9
SPDN 2-10
SPW 2-12
STMT 2-45
SUPERZAP 5-3,6-1
 display mode 6-3
 function mode 6-1
 modify mode 6-4
 SCOPY 6-3
SYSTEM 2-45,12-3
 AA 2-46
 AB 2-46
 AC 2-46
 AD 2-46
 AE 2-46
 AF 2-46
 AG 2-46
 AH 2-46
 AI 2-47
 AJ 2-47
 AK 2-47
 AL 2-47
 AM 2-47
 AN 2-47
 AO 2-47
 AP 2-47
 AQ 2-47
 AR 2-47
 AS 2-48
 AT 2-48
 AU 2-48
 AV 2-48
 AW 2-48
 AX 2-48
 AY 2-48
 AZ 2-48
 BA 2-48
 BB 2-48
 BC 2-49
 BD 2-49
 BE 2-49
 BF 2-49
 BG 2-49
 BH 2-49
 BI 2-49
 BJ 2-49
 BK 2-49
 BM 2-49
 BN 2-49
SYSTEM Files Required 5-1
SYSTEM reduced size 5-4

INDEX 4

STOP 2-44

– T –

track 10-9
TIME 2-50
timer interrupts 3-3,3-4

– U –

UBB 2-13
UDF 2-4
UNLOCK 2-40
UPD 2-4,2-14
UPDATE SERVICE 11-6
USD 2-13
USR 2-14,2-41
user segmented file 10-9

– V –

VERIFY 2-51
vice 2-44

– W –

WIDTH 2-26
whole record I/O 10-9
WORD 2-44
WRDIRP 2-52

– X –

XLF 2-14

- Z -

ZAP 10-9
ZAPS
 Distribution 11-5
 Duplication 11-7
 Format 11-2
 Installation 1-4,11-5,11-6
 Procedure 11-4
 Update Service 11-6

– SYMBOLS –

/ext 2-14,2-41
*name routine 3-10,3-11
123 - DEBUG 2-19,4-1
/ or shift up-arrow 7-3
; or shift down-arrow 7-3
. 7-3
, 7-3
@ 7-3
up-arrow 7-3
down-arrow 7-3

	Chapters 1-12
	APPENDICES
	APPENDIX A
	File Positioning
	OPEN
	CLOSE
	GET
	PUT
	LOF
	LOC
	MU FILES
	MF FILES
	MI FILES
	FF FILES
	FI FILES

	APPENDIX B
	Write records sequentially to a MU file.
	Read records sequentially from a MU file.
	Sequentially read and update the records of a MU file.
	Read in, sort in memory and write back out a MU file.
	Write records sequentially to a FF file.
	Read records sequentially from a FF file.
	Sequentially read and update the records of a FF file.
	Randomly read and optionally update the records of a FF file.
	Sequentially write records to a MU file and sequentially write records to a FF file that serve as an index into the MU file.
	Randomly read and optionally update the records of an indexed MU file.
	Sequentially write different type records to a MU file.
	Sequentially read and optionally update records from a MU file containing multiple record types.
	Sequentially write records to a MF file (marked item file of fixed length records).
	Randomly read and optionally update records of a MF file.
	Sequentially write to a MI file.
	Sequentially read a MI file.
	Sequentially write records to a FI file and sequentially write index records at the end of that file to indexing into the main records.
	Randomly read and optionally update the data records of an indexed MI file.

	APPENDIX C
	Overview
	Comments and Restrictions
	Changes to PDRIVE for Hard Disk Operation
	Formatting your Hard Disks
	Moving NEWDOS/80 Version 2.5 to the Hard Disk
	Defining PDRIVE Slots from a Volume Definition File
	Backing Up Hard Disks to Diskette

	Index

