APPENDICES

APPENDI X A

Under standi ng and | earning to use the marked itemand fixed itemfiles
specified in chapter 8 has proved difficult to the normal NEWQOS/ 80 user;

t heref ore appendi ces A and B have been included to provide exanpl es and nore
explanation in an effort to ease this difficulty. Nothing in appendix A or B
is to be construed as overriding the specifications provided in chapter 8;
the two appendices are provided sinply and exclusively for exanples and

el abor ati on.

Appendi x A was witten by a user trying to cope with chapter 8 and is
basi cally his understanding of narked itemand fixed itemfiles.

Appendi x B is the NEWDOS/ 80 author's attenpt to provi de exanpl e progranms of
the 5 file sub-types: M, MJ, M, FF and FI

Fil e Positioning

File Position (fp) is an operand in all NEWOS/ 80 GETS and PUTS, and is
specified in section 8.4.1. Wen onitted, a null operand is assuned. The fp
operand ot herwi se conmonly consists of a special character, occasionally
foll owed by ot her special characters and/or expressions. One formof the fp
operand consists of nothing nore than a nuneric expression. In the forns,
which follow, special characters are to be used as shown. In those forms
showi ng a prefixing special character adjoining some other character string,
t he speci al character does not necessarily have to be contiguous with the
rest of the expression; it may be separated fromit by a blank or space.

fp Val ue Meani ng

(null)
If the fileis an MJ, M- or FF type file, and the REMRA is valid, the
file is advanced to the next sequential record; in any other case, the
current file position is not changed and processing continues fromthe
position left at the ternmination of data transfer of the previous
CET/ PUT. Open | eaves REMRA marked invalid for all file types, and sets
current file position equal to O (except for nmode "E", which causes
current file position to be set equal to the FPDE' s EOF val ue). The
first sequential access for record segnmented files always starts at
current file position

The current file position is not changed. This specification allows the
continuation of processing of a particular record by a GET or PUT. It
is primarily used to continue processing a record already partially
read or witten. For MJ, MF and FF type files, it cannot be used to
advance the file to the next sequential record, even though the file is
actual ly already positioned at that record, having exhausted the bytes
of the current record. To sequentially advance to the next record, use
fp = (null).

A-1 APPENDI X A

%

&&

I'rba

1%

If the REMRA is valid, the file is positioned to process that record
again; an error condition is raised if the REMRA is invalid. For MJ, M
and FF type files, this specification allows the reprocessing of the
record currently being processed, fromthe beginning, perhaps wth

di fferent variable nanes or expressions in the | GELs. For M and FlI
type files, it allows the reprocessing of the sane data item group as
was processed by the i mediately precedi ng GET/ PUT

If the REMBA is valid, the file is positioned to begin processing at
again it the point where the previous GET or PUT was at the end of its
file positioning phase; an error condition is raised if the REMBA is
invalid. This specification allows the reprocessing of a particul ar
group of data by a GET/PUT, and is prinmarily used to reposition a file
for partial record I/O It functions in the sanme fashion for al
NEWDOS/ 80 file types.

This specification perfornms a "pseudo FlI ELD' operation. No data
transfer takes place; the filearea FCB is not changed; the file does
not have to be open when this fp is used. It is used with FF and FlI
files to allocate user data strings of fixed sizes fromthe BASIC
string storage area in high nmenory.

This specification is used only with PUTs, and has no effect on file
positioning. It does however cause the current contents of a filearea
buffer to be witten to the diskette. It should be used whenever the
data in the buffer is particularly sensitive. It may be used specifying
the FAN of a PRINT file.

This specification is simlar to & except that in addition the file's
EOF is updated fromthe FCB to the FPDE. PUT fan, & all ows the
programer to force the EOF update to the FPDE without having to do a
CLOSE.

Using this formof fp specification causes GET/PUT processing to begin
at the specified location in the file where rba is a BASIC expression
evaluating to a RBA value. For MJ, MF and FF type files, the system
checks to make sure that a record begins at the specified location. In
the case of a MJ file, the RBA value nust point to an SORitem This
formof fp specification denands the greatest ampunt of care and
prenmeditation on the programmer's part, as if it is used incorrectly,
especially with FF and FI type files, it can be nost disastrous. It is
just about the only way to randomy access data stored in M, MJ and FI
type files.

This specification is basically the same as the !rba form except that
the current ECF value is used as the RBA. It is conmonly used to
position a file for extension - that is, to add records/data to the end
of the file. To extend a file it nust be opened with node "R'; node "D
will yield an error if extension is attenpted.

APPENDI X A A-2

I $r ba
This specification allows the programmer to position the file for the
next data transfer for that particular filearea,-without regard to the
specific access technique or verb used for the transfer; no data
transfer to user data areas occurs with this specification. No | GEL may
be referred to or included in the GET/PUT using this specification. The
positioning resulting fromthe use of this specification doesn't becone
effective until the next | NPUT/PRI NT or GET/PUT, and then only if no
additional positioning is specified. It can be used to position a file
for random access in a program whi ch uses a subroutine containing a
single GET/PUT having a (null) fp to do all file access; such a program
coul d process sequential groups of records randomy distributed
t hroughout a file.

I $%
The basic function of this specification is identical to !$rba, except
that it uses the current ECF value as the RBA. The GET/PUT using this
specification nust not refer to or include an I GEL. Again, the file
position resulting fromthis specification doesn't take effect unti
t he next | NPUT/ PRI NT operation, or the next CGET/PUT (if another fp
isn't specified).

I #r ba
Used only with PUT, this specification sets the filearea's EOF val ue
equal to the value rba. For the real EOF value of the file to be
altered, that is, the one in the FPDE, the filearea nust either be
closed or a PUT && statenment executed. The EOF val ue provi ded nust be
rational for the file type involved. For MF and FF files it nust be an
integral multiple of the file's standard record |ength.

rn (Record Nunber)
This specification is the sanme as the one supported by TRSDCS; rn is a
nuneri c BASI C expression which evaluates to an integer value from1 to
32767, inclusive. The specified record nunber is converted to an RBA
which is then used in the same functional nmanner as !rba.

As nentioned above, certain forms for fp change REMBA, REMRA or ECF. For your
conveni ence, the fp fornms and their effects on these fields are sumari zed in
the foll ow ng decision table.

fp REMBA REMRA EOF
(null) 1 1 6
* 1 2 6
3 4 6
$ 4 4 6
% 4 4 4
& 4 4 4
&& 4 4 4
! RBA 1 1 6
1 % 1 1 6
! $RBA 5 5 4
1 $% 5 5 4
! #RBA 4 4 1
RN 1 1 6

A-3 APPENDI X A

Meani ngs of codes in the matrix:
1 -- The field is set to the RBA resulting fromthat fp val ue.
2 -- If REMRAis invalid at the beginning of the statenents execution
or it isan M or FI file, the fieldis set to the RBA resulting from
the fp value. In other words, it is set if the current file position is
at the beginning of a record, otherwise it is unchanged.
3 -- The field is set equal to REVMRA
4 -- The field is not changed.

5 -- The field is set to an invalid val ue.

6 -- For output/update files, the field is changed if a PUT extends the
file.

Al together, there are four areas in an FCB relevant to 'file positioning.
These are:

Current File Position
This single field can be | ooked at as being 3 different val ues,
dependi ng upon where the GET/PUT is in its processing:

GPP1
The file position at the start of GET/PUT execution. Unless
the file has been closed and re-opened, it is the sane
value left as GPP3 fromthe last GET/PUT for that fil earea.

GPP2
The resulting RBA value after positioning has been done,
and prior to any data transfer. GPP2 is the val ue saved as
REMBA and REMRA whenever these val ues are set.

GPP3
The RBA value after the |last byte of data transfer, if any,
real or bypassed, has been acconpli shed.

REMRA

For MJ, M/, FF and field itemtype files, it contains the RBA
val ue of the beginning of the record in process. For M, FT and
I NPUT/ PRI NT files, it is equal to REMBA. See GPP2 above.

REMBA
The RBA val ue where the previous data-transferring GET/ PUT began
its data transfer. If the file is record-segnented, and REMBA is
at the start of a record, REMRA is set equal to REMBA. See GPP2
above.

EOF
The RBA value of the last byte of data in the file, plus 1. For
MJ, M-, FF and field itemtype files, it effectively points to
the next sequential record to be witten to the file. For M, FI
and I NPUT/PRINT files, it effectively points to the next
sequential byte to be witten to the file.

APPENDI X A A-4

The general method of nanaging the various fp values in the FCB goes as
fol |l ows:

The file is moved fromthe current file position (GPPl) to the requested
position, if necessary. This may include witing an updated buffer back to
the di skette, conputing the new sector address, and reading that sector into
the buffer.

The RBA resulting fromthe requested positioning is placed in the current
file position (GPP2).

REMBA is set equal to the current file position (GPP2).
If the file is an INPUT/PRINT file, is user-segnented, or is record-segnented
and the current file position (GPP2) points to the start of a record, REMRA

is set equal to the current file position (GPP2).

Data transfer, if any is requested, is done. The current file position (GPP3)
contains the RBA of the byte following the |ast one transferred.

If the file has been extended, or the fp = INS, ECF is set to the appropriate
val ue of the two.

A-5 APPENDI X A

OPEN

Any file nmust be opened before the data in it can be processed. The OPEN verb
itself establishes an I/OIlink between the file and the applications program
The link's control information is maintained in the filearea (which contains
a FCB). Once opened, the data in the file is made available to the program by
means of | NPUTS or CETS; data is placed on the file via PRINTS or PUTS. Wen
the processing of the data is conplete, the file should be closed, thus
breaking the 1/Olink between the file and the program

NEWDOS/ 80 supports five OPEN nodes: "I1" for sequential input (INPUT verb),

"0" for sequential output (PRINT verb), "R' for random access i nput/out put
(CGET or PUT verbs), "E' for sequential output starting at the current EOF for
existing or new files (the "E' could be read as "extend"), and "D' for random
access files which the user does not want expanded/| engthened w th PUTS
beyond the current ECF.

NEWDOS/ 80 BASIC narked itemand fixed itemfile support allows the GET and
PUT verbs to be used with all five nodes. The general form of the NEWOS/ 80
OPEN verb is:

1. OPEN mfan,fil espec
2. OPEN mfan,filespec,lrecl
3. OPEN mfan,filespec,ft
4., OPEN mfan,filespec,ft,lrecl
where: m
is an expression evaluating to a string equal to "1", "0", "R', "E'" or "D'.

It specifies the node of access to be used for the file, as well as the
initial positioning of the file.

fan
is the number of the filearea to be opened.

fil espec
is an expression evaluating to the name of the file to be opened.
The expression itself can be a string literal or constant.

ft
is an expression evaluating to a string equal to "FI", "FF",
"M", "MJ' OR"MW'. It identifies a particular NEWOS/ 80 sub-file
type, which will all be explained shortly. Wenever ft is used in
an OPEN statenent, CGETS and PUTS are the only way to transfer
data fromand to the file. INPUTS and PRI NTS nust not be used.
Neit her may the BASIC FIELD statenent be used. Al GETs or PUTS
used to transfer data nmust specify either an | GELSN or contain
the I1CGEL itself. The applications programnust not alter or
directly reference the data in the filearea in any way. Two ft
val ues require the specification of Irecl in the OPEN statenent;
athird ft allows its optional specification

lrecl
is an expression evaluating to an integer value between 1 and 256

APPENDI X A A-6

for field itemfiles and between 1 and 4095 for marked item and
fixed itemfiles. It nmust be specified for all record-segmented
files (except field itemfiles where 256 is assuned if lrecl is
not specified), and specifies the exact length of all records in
the file for field item "FF' and "M~ files, or the optiona
maxi mum |l recl for file type "MJ

Note that the standard forns of BASIC OPEN have not changed (formats 1 and
2), thus allowing existing field-file and print/input file oriented
applications to continue to function. The extensions to the standard forns
identify the file as a NEWDOS/ 80 file, and define the file type and access
techni que used to retrieve and mani pulate the data in it.

O all the file types supported by NEWOS/ 80, the easiest one to use and
understand is '"*MJ"'. It defines a file, which contains marked itenms, and is
segnmented into records of varying lengths. The length of a record-is defined
as the difference between the RBA of the record' s SOR and the RBA of the next
record's SOR or the RBA of the file's EOF, whichever follows. The record

| ength need not be specified in the OPEN statenent; but if it is provided, it
specifies the maximumrecord length allowed in the file.

A record in an "MJ' file can be updated with another record of the sane or
shorter length than it was originally created with, but it cannot be

| engt hened. When a record is updated with a record, which is shorter than the
original record, the newrecord is padded on the right with fill items (bytes
of hex '00'") to the end of the original record. This shorter record can |ater
be replaced with one, which is longer, as |long as the new one is not |onger
than the record originally witten to the file.

The "MJ' file type is intended to replace BASIC s sequential input/output
files accessed via I NPUT/PRINT verbs. Its greatest strength is that no
special delimters have to be provided by the programmer to separate two
contiguous string itens (in BASIC sequential file support, a coma nust be
PRI NTed between the strings for the INPUT to be able to separate them. A
secondary benefit of "MJ', and all other NEWDOS/ 80 BASIC files too, is that
nuneric values are stored on the diskette in their internal form That is,
for exanple, a double precision value is witten as an 8-byte item rather
than an up-to-14 character itemrequiring conversion back to interna
(8-byte) formon input. Don't forget that in the case of narked itemfiles,
such as "MJ', a double precision itemactually requires nine bytes due to the
prefixing control character. If an Irecl is specified in the OPEN statenent,
it sets the maxi mumrecord length allowable for the file, and nust allow for
all control bytes (including SOR itens) in each record.

The next nost sinple forns of ft to use are "M and "FF". Both identify a
file as record-segnented, and having records of fixed |length. They both inmply
that all records have the same internal data structure, but do not guarantee
that condition. The OPEN statenent nust specify the exact |ogical record
length of all records in the file. In the case of "M, the narking control
bytes nust al so be accounted for in the length (note that an "M file
doesn't use SOR itens at the start of each logical record since BASIC knows
where each record starts). Each GET/PUT checks the | GEL's data | ength agai nst
the Irecl specified at OPEN tine, and raises an error condition if the IGEL's
length is greater.

A-7 APPENDI X A

The nost difficult forns of ft to use are "M" and "PI". They specify that
the file is record segnented entirely under user control. The "lrecl"” rmust
not be specified in the OPEN statenent for these file types. These forns

allow a file to contain a very conplex data relationship, without BASIC s

know edge of the users data structure. That is, BASIC cannot advance from one

user record to another.

APPENDI X A A-8

CLOSE

The CLCSE verb breaks the I/Olink set up by the OPEN verb between the BASIC
application programand a file. Its general format has not been nodified by

NEWDOS/ 80.

Depending on the file's nobde and type, the contents of the fil earea buffer
may be witten to the diskette by this verb. For output and randontaccess
files the file's directory entry is updated to reflect the current EOF val ue
stored in the filearea's FCB

A-9 APPENDI X A

GET

In field item (TRSDOS random) file processing, the GET statenent is used to
read a particular record into the filearea's buffer. The FIELD statenent is
then used to adjust the data pointers of string variables to address the
buffer itself. This nethod of data access causes the file to be terned a
field itemfile in NEWDOS/ 80 since all the other file types may al so be used
randonl y

In addition to continued support of field itemfiles, NEWOS/ 80's GET
statenment is used in marked itemand fixed itemfile processing to transfer
data froma file to user-specified variables, define the variables

t hensel ves, or position a file for later operations. The actual transfer of
data fromthe diskette to the buffer occurs only as needed by the BASIC s
determ nation of the IGEL data requirenents in relation to the data currently
in the buffer.

The general formof the GET statenent is:

CET fan (a null fp is assuned)
CGET fan,fp

CGET fan,fp,igelsn

CET fan,fp,,igel

PwoNE

Formats 1 and 2 are used for field itemfiles and are conpati ble wi th TRSDOS
BASI C. They naturally may al so be used i n NEWDOS/ 80 BASI C application
progr amns.

Formats 3 and 4 are unique to NEWDOS/ 80 BASIC. They nust be used in data
transfer GET whenever the filearea is open for marked itemor fixed itemfile
operations. Format 2's useful ness has been expanded by the addition of

several new fp specifications unique to NEWQOS/ 80.

Format 3 specifies the location of the I GEL containing the data nanes, which
are to contain the data at the conpletion of the GET; format 4 contains the
| GEL as an integral part of the GET statement itself.

In NEWDOS/ 80, no function in the IGEL or the fp paraneter nay reference a
filearea, even if that filearea is the sanme as that used by the GET or PUT
st at enent .

At the successful conpletion of a GET statenment, the filearea is left
positioned at:

a. the next byte of the file for fixed itemfiles.
b. the next itemin the file for marked itemfiles.
c. the next 256 byte record for field itemfiles.

If an error is encountered during the processing of a GET statenent, the
filearea is reset to its status and content prior to the execution of the
statenment. After correction of the error, the GET statenent nmay be executed
again. The contents of the variables naned in the |GEL are entirely
unpredi ct abl e when an error is detected, and should not be used unless the
GET has been re-executed successfully.

APPENDI X A A-10

When a GET statenent refers to or contains an | GEL, successive file itens are
transferred to successive variables naned in the | GEL.

For fixed itemfiles:
String variables of the IGEL are filled with the nunber of bytes
specified in the expression prefix. As a result, the length of the
variable is nmade equal to the value of the prefix.

Nurreric variables of the IGEL are filled with the nunber of bytes
corresponding to that items internal form (Integer itens are two
bytes long, single precision itens are four, and double precision are
ei ght.)

Prior to the first GET which transfers data to user variables, a GET
using ft = % my be issued. The file referenced by the fan need not
necessarily be open when this GET is issued, as the purpose of this GET
is to performthe pseudo FIELD function for fixed itemfile operations.
As the I GEL itens are processed, nuneric variables are | eft unchanged,
(len)$ and (len)# itenms are ignored, and string variables have their
length set to the value of the expression prefix, and are truncated or
padded on the right with blanks as necessary. If a string variable
exists at the time the pseudo FIELD is issued and its contents/val ue
doesn't reside in the BASIC string area, its contents are noved there.
This is done in an attenpt to ensure that enough string space exists
for continued operation, as the subsequent data transfer GETS will
actually nove data to the variable, rather than sinply changing the
vari abl es data pointer. Once referred to by a pseudo FIELD operation
string variabl es should have their contents changed only by LSET or
RSET to ensure that the variables | engths do not change. I n NEWQS/ 80
version 1, the pseudo FIELD function was required before any PUTS to a
fixed itemfile; in version 2 this is not required and many prograns
using fixed itemfiles will elect not to use the pseudo FIELD function
at all.

If the file is record segnented and there are fewer bytes in the record
fromthe current file position at the start of data transfer of the
itemthan are requested by the IGEL item a "RECORD OVERFLOW error
condition is raised.

For marked itemfiles:

A null | CGEL expression causes the corresponding file itemto be
ski pped.

The expression prefix of a string variable is used to limt the nunber
of characters actually transferred to the variable. If the file itemis
shorter than what the expression prefix allows, the |l ength of the
string variable is set to that of the file item If the file itemis

| onger than what the expression prefix allows, the file itemis
truncated on the right to that length, as would be done by an LSET.

SOR and fill items are skipped as they are encountered.
If the file itemtype and the IGEL itemtype are inconpatible, a "TYPE

M SMATCH' error is raised. If for exanple, the file itemtype were
single precision and the 1GEL itemtype were string, the error would be

A-11 APPENDI X A

raised. If however, the IGEL itemtype were integer, no error would be
raised unless the file itenml s value exceeded what was |egal for integer
itemns.

If the file is record-segnented, and there are fewer itens renmmining in
the record fromthe current file position at the start of data transfer
of the itemthan are in the | GEL, a "RECORD OVERFLOW error is raised

Two special forms of fp may be used to set the file position for subsequent
processing, regardless of the type of processing nornally done for the file.
These are fp = !'$rba and fp = 1$% Use of either of these forns cause REMRA
and REMBA to be marked invalid. Use of either of these ft values in a format
3 or 4 GETis invalid, as no actual data transfer takes pl ace.

More than one GET may be used to retrieve successive file itens froma single
record. This technique is called partial record I/O The first itemin a
record could, for exanple, identify the record as containing a nane and
address, a transaction nunber and anbunt, or an invoi ce nunmber and expected
ship date. The first byte could be read by itself and used to transfer

control within the programto the appropriate routine to handl e the data,

whi ch foll ows.

Partial record I/O as an access technique can be readily used with fixed item
files and field itemfiles. In field itemfiles, the technique calls for
reFl ELDi ng when the new record is not the sane type as the previous record.
In marked itemfiles, items to be bypassed in a record are sinply left as
null items in the GET's IGEL. In fixed itemfiles, the Iength of the fields
to be bypassed nust be deternined, and that sum be specified as the length
prefix of a (len)$ IGEL item in order to position the record to the proper
byte to be transferred. The real strength of partial-record I/Owth fixed
itemfiles is that as little as a single field imbedded within a record can
be updated i ndependently of all other data in the record; with marked item
files, all itens beyond the one to be updated would first have to be read,
then re-witten with the item being updated to maintain their content. The
primary benefit of partial record I/Ois that several record formats can
reside in a single file and only as nuch data need be transferred as
necessary to identify the particular format.

APPENDI X A A-12

In field itemfile processing, the programer executes, if not done
previously, a FIELD statement to define the variables' buffer overlaying nmain
menory positions. Next, the values for those variables are noved into them
using LSET or RSET statenents. Lastly, the record is witten (or buffered)
using the PUT statenent.

For marked itemand fixed itemfile processing, the contents of BASIC
variables are witten (or buffered) using the PUT statenent wi thout the need
of nmoving the data first to special encoded variables. Instead an IGEL is
used to specify during the PUT which variables are to have their contents
sent to the file.

Remenmber, no | GEL expression or the-fp expression may contain functions that
reference a filearea

The general form of the PUT statenent is:

PUT fan (a null fp is assuned)
PUT fan, fp

PUT fan, fp,igelsn

PUT fan, fp,,ige

bR

Formats 1 and 2 are used in field itemfile operations and are conpatible
with TRSDOS BASIC. They naturally nay continue to be used in application
prograns runni ng under control of NEWOS/ 80.

Formats 3 and 4 are unique to NEWDOS/ 80 BASIC. One or the other or both mnust
be used whenever data is transferred to the file during marked item or fixed
itemfile processing. Format 3 specifies the |location of the | GEL contai ni ng
the expressions to be sent to the file; format 4 contains the IGEL itself as
a part of the PUT statement. Format 2 PUTS nay be interspersed with formats 3
or 4 to achieve the necessary file positioning for subsequent data transfer

At the successful conpletion of a PUT statenment, the filearea is left
posi tioned at:

a. the next byte of the file for fixed itemfiles.
b. the next itemin the file for marked itemfiles.
c. the next 256-byte record for field itemfiles.

If an error is encountered during the processing of a PUT statenent, the
filearea is reset to its status and positioning prior to the execution of the
PUT statenent. The data in the file as a result of the error is conpletely
unpredi ctable, and will nost likely cause errors on a subsequent GET. This
situation occurs only during the updating of existing records; if possible
and practical, a PUT should be issued later in an attenpt to correct the
error. In an effort to reduce the possibility of danage to the file when the
file is opened using the "R' or "D' npode, NEWDOS/ 80 BASI C processes the | GEL
twice inits entirety, once to catch errors in | GEL specification, and again
to actually transfer the data to the buffer.

A-13 APPENDI X A

Wien a PUT statement refers to or contains an | GEL, the contents of
successive | GEL expressions are transferred to the filearea buffer and becone
file itens.

For

For

fixed itemfiles:

A string variable or expression may have a length different than the
one allowed by the expression prefix in the IGEL. Strings which are
shorter have the corresponding file item padded on the right with

bl anks; strings which are | onger have the corresponding file item
truncated on the right in the manner used by LSET. In other words, the
expression prefix value determ nes exactly how many bytes are to be
nmoved to the file item

A record overflow error condition is raised if the logical record

length is exceeded. During whole-record I/Q if the sumof all item
lengths in the | GEL exceeds the LRECL, the error is raised. During
partial-record I/Q, if the sumof all itemlengths in the | GEL exceeds

t he nunber of bytes left in the record, the error is raised.

Prior to the first PUT statement which actually transfers user data to
the buffer, a PUT using ft = % may be issued. The file referred to by
the fan need not necessarily be open at the tinme of this PUT, as its
purpose is to performthe pseudo FIELD function. As the IGEL itenms are
processed, nuneric itenms are |left unchanged, (len)$ and (lend itens are
i gnored, and string expressions have their length set equal to the

val ue of the expression prefix, and are truncated or padded on the
right with blanks as necessary. |If the string variable exists at the
time of the pseudo FIELD PUT and the string itself doesn't reside in
the BASIC string space, it is nmoved there. Once referred to by a pseudo
FI ELD PUT statement, string variables should have their contents
changed only by LSET or RSET statenents to ensure that their |engths do
not change. In NEWDOS/ 81 version 1, this pseudo FIELD function was
required before any PUTS to a fixed itemfile; in version 2 this is no
| onger required and many prograns using witing to fixed itemfiles
will elect not to use the pseudo FIELD function at all. The pseudo
FIELD function is left in existence for the progranmer who wants to
assure I CGEL related string variables maintain the required | ength at

all tines.

marked itemfil es:

SOR and fill itens are inserted into the filearea buffer as dictated by
the file's ft, the PUT's fp and the I GEL data | ength versus the file's
record | ength.

Nearly anything syntactically legal on the right hand side of a LET
expression's equal sign is legal as an expression in an | GEL referenced
by a PUT statenent, excepting that a filearea may not be referenced in
such an expression. Specifically excluded fromappearing in any |GEL
expression are LOC, LOF, EOF and any ot her expression, which references
a fan.

When a string expression in an | GEL has a length prefix, the prefix
det ermi nes t he maxi mum nunber of characters to be witten to the file.
If the string is shorter than the expression prefix allows, the string

APPENDI X A A-14

is witten to file as is. If the string is longer, the corresponding
file itemit is truncated on the right as would be done by an LSET
operation.

Strings require either one or two narking bytes, depending on the
nunber of bytes in the string. If the string has fromO to 127 bytes in
it, it requires only one marking byte to describe it on file. If it has
128 bytes or nore, then two marking bytes are required to describe it.
Al'l these marking bytes nust be allowed for when specifying an Irecl at
open tine.

Nurmeric | GEL expressions are placed in the buffer in their interna
BASIC form 2 bytes for integers, 4 bytes for single-precision nunbers
and 8 bytes for doubl e-precision nunbers. Don't forget that each

i ndividual file itemhas a marking byte associated with it, and that
the correct lengths of the itemtypes just nentioned are 3, 5 and 9
byt es.

Nureric literals and expressions in the IGEL are first converted to the
nost conpact internal BASIC data type that preserves their precision
before being sent to the file. For exanple, the nunmeric literal 3.14159
woul d be sent to file as a single precision nunber (5 bytes including
mar ki ng byte); the value resulting fromLEN(A$) mnus LEN(B$) woul d be
sent to file as an integer number (3 bytes including marki ng byte).

Two or nore PUT statenments nay be used to output all the items of a
record. The nunber of bytes actually conprising a single |ogical record
cannot exceed the Irecl value specified in the OPEN statenent, or the
system naxi mum of 4095 bytes.. Any attenpt to exceed either of these
limts results in a "RECORD OVERFLOW error

In the case of MJ and MF type files opened for random access updating
pur poses, the record existing on file, fromthe current file position
at the beginning of data transfer for the PUT, to the record' s end
(defined by the next SOR, or ECOF) is replaced inits entirety. If the
cunul ative | GEL data length is less then the file record' s renaining
length, the IGEL data is sent to the file and padded out with fill
items to conpletely fill the file record. Be very careful when
operating in this node, because if the PUT's | GEL defines fewer itens
than exist in the file record at the tine of update, the excess file
itens are elinnated; later GET statenments will encounter problens if
t hey expect the original nunber of items to be present in that record.

Items in a M type file cannot be updated as the system has no idea
where the user's record ends, and therefore cannot pad to the end of
the record as it does for MJ and MF files.

For both fixed itemand narked itemfiles:

The filearea's buffer is actually witten to the diskette when

The | ast byte of the buffer is filled with data fromthe | GEL,
and nore data has yet to be noved.

A PUT statenent with an fp of "&" or "&&%" is executed, causing
the buffer to be witten to the diskette in its current state.

A-15 APPENDI X A

The file is closed, explicitly by fan, or inplicitly by a genera
(non-specific) CLOSE.

If the data in the file be especially critical, the progranmer should
consider the use of PUT statements with the fp of "&"'. This will cause the
filearea's buffer to be witten to the diskette w thout disturbing the
current file positioning. If there is no data in the buffer waiting to be
witten to the diskette, this particular PUT statenent will be ignored.
Shoul d sone other filearea used by the programrequire the data in this
filearea to be disk-resident, the fp of "&" nust be used. Don't overl ook the
fact that an fp of "&" is used only in a format 2 PUT; any data to be witten
to file nust first have been placed there by a format 3 or 4 PUT. The use of
fp =& is not restricted to marked itemor fixed itemfiles - it may be used
with field itemfiles or print/input disk files also.

Everything said above for the PUT fan, & statenent also applies to the PUT
fan, & statement which, in addition, wites the file EOF fromthe filearea's
control information back to the file's directory entry.

Two special forms of fp may be used to set the file position for subsequent
processing normally done for the file, regardl ess of the actual type of
processing i nvolved: GET, PUT, INPUT or PRINT. These are fp = !$rba and FP =
1$% Use of either of these forms causes REMRA and REMBA to be marked
invalid. The file is positioned so that the next GET/ PUT/I NPUT/ PRI NT verb
begi ns processing either at rba or EOF, if no further fp is specified. No
dat a movenent occurs using these fp values, as they are allowed only in a
format 2 PUT.

A PUT statenent using an fp of !#rba causes the file's EO-F to be set to the
RBA val ue rba. Don't forget that the ECOF value is not witten to the file's
FPDE until a CLOSE or a PUT fan, & statement is executed. The EOF may be
changed many tinmes in this fashion before it is nade final. An error
condition is raised if the OPEN statenment's node was "D', and the RBA exceeds
the current ECF value. This fp value may only be used in a format 2 PUT

As was the case with GET for sequential input, the PUT statenent can be used
in a sequential output node. A narked itemor fixed itemfile can be created
sequentially with PUT statenents after having been opened with node "O', and
| ater read sequentially with GETS after having been opened with nmode "I". The
sanme file can be updated randomy by use of GET and PUT statenents when the
open node is "R' or "D'. Single data fields in FF and FI type files can be
updat ed using partial record I/O access techni ques.

Shoul d a particular data file be especially sensitive, and require read-only

random access, the use of open nbde "R' is not required; open node "I" may be
used i nstead. The use of this particular node will cause any PUT attenpted to
get a "BAD FILE MODE" error.

APPENDI X A A-16

LOF

The function of the LOF statement is to return to the programer the record
nunber of the last record of the file. Its general format is:

LOF(f an)

The fan specifies the nunber of the filearea for which the |last record nunber
is being requested. If the file is enpty, a zero is returned. LOF naturally
may be used only with field item M and FF type files.

A-17 APPENDI X A

LOC

The LOC function, in TRSDOS BASIC, returned to the programer, the record
nunber | ast accessed via GET/PUT for a specified filearea. | n NEWDQOS/ 80
BASIC, its function has been expanded to allow the programer to find the
file location of a group of itenms, records or the files' EOF, or determine if
the current file position is exactly at or beyond the file's EOF. Its genera
formats are a foll ows:

LOC(f an) performs essentially the same as in TRSDOS
LOC(fan)$

LOC(f an) %

LOC(fan)!

LOC(f an) #

where fan specifies the fil earea nunber containing the requested
i nformation.

agrwONE

Format 1 (no suffix) is the one used in TRSDOS BASIC. For field itemfiles
(as are supported by that BASIC) and M- and FF files, it returns the nunber
of the record nost recently read or witten via GET/PUT. If the file has not
been accessed, a value of zero is returned, except in the case of a file
opened using node "E', where the record nunber of the last record in the file
is returned. If the file being referenced is not nade of fixed-length
records, a "BAD FILE MODE" error condition is raised.

Format 2 ("$" suffix) is used to provide a true/false indication of the
relationship of the filearea's positioning to the file's EOF. It returns a -1
(BASIC IF statenent "true') or a 0 (BASIC IF statenment 'false') as foll ows:

For record-segnmented (fixed item MJ, M and FF type) files:

If the REMRA is valid, and the RBA of the start of the next
record (not necessarily the current file position!) is equal to
or greater than the EOF value, a 'true' value is returned;
otherwi se a 'false' value is returned.

If the REMRA is invalid and the RBA of the current file position
is equal to or greater than the EOF value, a 'true' value is
returned; otherwise, a 'false' value is returned.

For user-segnented (M and FlI type) files, and for print/input files:

If the RBA of the current file position is equal to or greater
than the EOF value, a 'true' value is returned; otherw se, a
'false' value is returned.

Format 3 ("% suffix) returns to the programmer the file |ocation of the
current file EOF in RBA format. This value can be used in the devel opnent of
indices to the file, where the indexing itemis built prior to the data
record being added to the file at the EOF |l ocation. Using this formof LOC
allows indices to be created during the sequential creation of the prine data
file.

APPENDI X A A-18

Format 4 ("!" suffix) returns the RBA value of the next |ogical record for
field item MJ, M- and FF type files, if the REMRA is valid. In all other
cases (including print/input files), it returns the RBA value of the current
file position. For record segnented files, the value returned can be used to
create an indexing itemfor the sequential record before the data record has
been written to the file. For user-segmented and print/input files, the value
returned can be used to create an indexing itemfor the group of data itens
prior to witing themto the file. For the indexing value to really be good,
a PUT with a null fp, or a PRINT, nust be used to wite the data; nearly al
other fp forns will cause the RBA value returned to be different fromthe
actual location of the data. As with format 3, this formcan be used to
create indices as a sequential file is being witten.

Format 5 ("#" suffix) returns the current REMRA in RBA format. A "BAD FILE
MODE" error condition is raised if the REMRA is invalid, due for exanple, to
the use of an FP m!$% This too can be used for all file types to create

i ndexing itens for records or groups of data after, however, the record or
data group has been witten.

By using the values returned by LOC(fan)% LOC(fan)! or LOC(fan)#, the
programmer is able to build indices to either records (record-segnented
files) or groups of itens (user-segnented files and print/input files). The
val ues, returned can be included in records/file items and |later used to
position the filearea via fp types !rba or ! $rba.

A-19 APPENDI X A

MJ FI LES

The MJ file type is the easiest of all NEWOS/80's file types to inplement.
When it was originally conceived, it was intended as a replacenent for

TRSDOS' s sequential file support. In TRSDOS, sequential files could not be
updated; in NEWDOS/ 80 all but print/input and M type files can be updated

The MJ type file is segnented into records of varying | engths and each record
is detectable by the system This attribute relieves the programrer of the
need to be aware of the size of each record. The programrer can inpose a
smal |l er record size naxi mumthan the systen s naxi nrum of 4095 bytes by
specifying a Irecl value in the OPEN statenent. Any record exceeding the
maxi mum record length will cause a "RECORD OVERFLOW error condition

Besi des bei ng record-segnented, the file items in a MJfile are all narked.
The mar ki ng bytes occupy space on the file, and nust be included in any
record length cal culations along with the SOR byte, which marks the begi nning
of each record. These marking bytes identify the type of data, which follows
the byte, and in the case of strings, tells the systemthe | ength of the
string. Strings may be 0 to 255 bytes long, just as in BASIC, strings of 128
to 255 bytes require 2 marking bytes instead of the 1 required by all other
itenms. Numeric itens are stored on the disk in their internal form integers
as 2 bytes, single-precision items as 4 bytes, and doubl e-precision itens as
8 bytes. Don't forget that as narked-file itenms these | engths nust be
increased by 1 to 3, 5, and 9 bytes respectively.

Even though the nuneric itens are stored in their internal forms on the disk
in all the NEWDOS/ 80 file types, BASIC s CVx and MKx do not (indeed, nmnust
not) be used to performa pseudo-string conversion in order to cause this
formof data storage to occur; Cvx and MKx nust still be used to acconplish
this formof data storage for field itemfiles, as was the case w th TRSDOS
BASI C.

A MJ file can be created by specifying "0" as the node in the OPEN statenent;
the file will be created using the data in successive PUTS w thout regard to
the file's existence at the tine of the open. AMJ file may al so be created
using node "R'" in the OPEN statenment only if the file did not exist prior to
the open. A third nmethod of creating a MJfile is to use node "E' in the OPEN
statenment for a previously non-existent file, or an existing file, which is

enpty.

A existing MJ file can be expanded sequentially by specifying node "E" in the
OPEN statement. As noted above, if the file is enpty, it will effectively be
created rather than expanded/ extended. An alternate nmethod of sequentially
expanding a MJ file is to specify node "R' in the OPEN statenent. In this
node if non-null fp's are specified, the systemwites padding bytes fromthe
current EOF to the specified beginning of the new record. Any PUT to a file
position less than the EOF causes an updating action to occur, not an
extension of the file.

A MJfile may be accessed sequentially by specifying "I" as the nbde in the
OPEN statenment; use of this node prevents accidental updates from occurring.
The file nmay al so be accessed randonly when opened with node "I". If the file
is non-existent at the tine of the open, an error condition is raised. A MJ
file may al so be accessed sequentially by specifying "R' or "D' as the node

APPENDI X A A- 20

in the OPEN statenment. Using these nodes, if the file was non-existent prior
to the open, any GET issued w thout a prior PUT and subsequent repositioning
will cause an error condition to be raised.

A MJ file may be updated by specifying node "R' or nbde "D' in the OPEN
statenent. The use of npbde "D' precludes the expansion of the file. In either
of these npdes, anything froman entire record to a single itemnay be

updat ed, dependi ng upon the fp values used and the contents of the | GEL.

To understand t he workings of the systemon a MJ type file, we'll do the
following things. First, we'll create a MJ file using a very sinple, short
BASI C program Then, by working in the so-called cal cul ator node, we'll
access the file and update it. To create the file, enter and RUN t he

foll owi ng BASI C program

10 CLEAR 250

20 OPEN "O', 1, "MJ DAT", "MJ

30 PUT 1,,,"ABCDEF","2ND STRI NG';

40 PUT 1,,, STRING$(120, "*")+"0123456789";
50 1 9%2:11=4:1#=8

60 PUT 1,,,18, 1%I1!,I#

70 CLCSE

Save the programwi th an appropriate nanme just in case you need it later

Now, notice that the program uses the sinplest formof IGEL in statenents 30
and 40; the values to be witten to the file are in the I GEL proper. The PUT
at 60 references the four different BASIC data types: string, integer, single
preci sion and doubl e precision. Notice also that no Irecl specification was
in the OPEN statement. This allows the records to be as nmuch as 4095 bytes

| ong.

Run the programto create the file naned "MJ DAT". For study purposes, run
t he SUPERZAP programusing DFS to read the sector witten by MJFILE

The first byte of the sector is a hex 70. This is the SOR byte. Al records
ina M file start with this byte. Be aware that not all hex 70's are start
of record bytes, however, that particular bit configuration can occur in

nuneric values as well as in strings where it is a |l ower-case "

p.

The second byte is a marking byte identifying the next 6 bytes as a string.
Adding 6 to the displacenent of the first byte of the string will give us the
di spl acenent of the narking byte for the second string (a hex 8A). It defines
a string 10 bytes long. If you now count to the 11th byte down fromt hat
mar ki ng byte, the SOR byte for the second record will be found (at

di spl acenment hex 13). The follow ng marking byte (a hex 71) identifies a
string of greater than 127 bytes long; the byte followi ng that marking byte
contains the length, and is not a part of the string data itself. Alittle
hex arithmetic at this point will show that the SOR byte of the third record
will be found at displacenment hex 98. The nmarking byte followi ng that SOR
identifies a string zero bytes long: a null string. The next marking byte
(hex 72) identifies the following 2 bytes as an integer nunber. Follow ng the
integer is a marking byte (hex 73) identifying the next 4 bytes as a single
preci sion nunber. Followi ng that number is a nmarking byte (hex 74)
identifying the next 8 bytes as a doubl e precision nunber. At this point

A-21 APPENDI X A

(di spl acement hex AB) we've exhausted the data we actually wote to the disk
any data, which follows, is unpredictable.

Now t hat we've seen how data is stored in a MJfile, as well as any other
marked itemfile for that matter, we'll access the data using GETS in the
"cal cul ator npde" and analyze the results. Later, we'll introduce a few
errors. Before going any further, return to the BASI C READY state, enter
CLEAR 50 and NEW and type in the following three-line program (this wll
save steps later).

10 PRINT LOC(1)$; "$ EOF TEST "; LOC(1)% "% EOF RBA"
20 PRINT LOC(1)!; "! NEXT RCD RBA ";
30 IF LOC(1)! = 0 THEN PRI NT ELSE PRI NT LOC(1)#; "# REVRA"

The purpose of the programis to display the file positioning val ues
available to us. For the sake of clarity, the first character of the string
identifies the LOC suffix used to get the val ue displayed and the remainder
of the string a menonic associated with that particular LOC function. You
may want to save this programalso, as it will be used in experinments with
all the other file types later.

The first thing to do nowis to open the file for input. Type in:
OPEN "1™, 1, "MJDAT", "MJ

Now enter "GOTO 10" to run the programentered a monent ago. (You nust use
GOTO rat her than RUN because RUN cl oses any open files.) The systemwil|
respond with:

0 $EOF TEST 171 % EOF RBA
0 I NEXT RCD RBA

Notice that the REMRA value isn't printed. That's because the val ue hasn't
been set yet, and is marked as invalid by the system Because the program we
entered isn't too smart, it sinply checks for a zero next record val ue,
rather than attenpting to be sensitive to the actual validity of the REMRA

Now we'l|l read the first record in its entirety. Type in:
GET 1,,,A$,B$; : PRINT A3, B$: GOTO 10
The systemwi || respond with:

ABCDEF 2ND STRI NG
0 $ EOF TEST 171 % EOF RBA
19 I NEXT RCD RBA 0 # REMRA

Notice that the two EOF rel ated val ues have not changed, but that the next
record RBA has. It now contains the decinmal displacenent of the SOR byte of
the second record. This is the normal action of the GET on a record-segnented
file. Notice also that the REMRA has now appeared, and that it has a val ue of
zero. Renenber that for record segnented files the REMRA contains the RBA of
the latest record involved in the GET or PUT for that filearea, unless its
has been marked invalid due to the use of OPEN or ! $RBA.

APPENDI X A A-22

Now we' || go back and read the first record again in its entirety by using
the fp val ue which causes file positioning back to the REMRA val ue. To prove
the record has been read a second tinme, we'll reverse the order of the

vari abl e nanes. Type in:

GET 1,#,,B%, A%, : PRINT A3, B$: GOTO 10
The systemwi || respond with:

2ND STRING ABCDEF
0 $ EOF TEST 171 % EOF RBA
19 I NEXT RCD RBA 0 # REMRA

Agai n, the EOF val ues have not changed. This tinme, however, neither have the
other two values. This is because the file's next record pointer was changed
to the REMRA value prior to the data transfer. The next record pointer was
then nmoved to the REMRA, followed by the transfer of the data to the naned
vari abl es. The same general nethod is followed when !rba is specified for the

fp.

Let's get daring now, and ignore the contents of the next record (the one
with the 120 asterisks in it), and at the sane tinme position ourselves to
process the third record. Type in:

CET 1,,,; : GOTO 10
The systemwi || respond with:

0 $ EOF TEST 171 % EOF RBA
152 | NEXT RCD RBA 19 # REVRA

Not hing really surprising there; again, in the case where no file positioning
was specified in the GET, the next record RBA was noved to the REMRA. Wth
the lack of variable names in the IGEL, no data transfer occurred, and the
file was left positioned to the record's first item

Now let's try sone of partial record 1/O W'Il start by transferring only
the string fromthe third record, and | eave ourselves positioned so that the
next transfer will begin at the integer. Type in:

GET 1,,,A%; : PRINT A$: GOTO 10
The systemwi ||l respond with:

(bl ank line)
-1 $ EOF TEST 171 % EOF RBA
171 ! NEXT RCD RBA 152 # REMRA

Several things should be noted here. Since the file was |left positioned to
the 2nd record's 1st itemby the previous GET and the GET in this exanple
specified fp = (null), the file was automatically advanced to the beginning
of the third record's 1st itemby this GET's file positioning phase. Then the
3rd record's first itemwas read, and the file was |eft positioned to the 3rd
record's second item W' ve started processing the last record in the file.
The system hasn't told us that, but has nade the infornmation available to us
through the LOC(fan)$ statenent. in commopn sequential data processing

A- 23 APPENDI X A

situations, the ECF status of a file is tested as a function of the GET
logic, and transfer of control is nade to an end-of-data routine specified by
the programer. As no provision has been made for the specification of such a
routine in NEWDOS/ 80, the ECOF status of the file nust be tested i nmediately
prior to the GET statenment attenpting to transfer the next record' s contents
into nenory, and appropriate action taken if the EOF condition is found to be
true.

Notice that the LOC(fan)! value is the same as the EOF RBA val ue, even though
we transferred only the first itemof the last record. This is because in the
case of record-segnented files, the function returns the RBA of the next
record. Only when it is used on a user-segnented file does it return current
file position. If you ve gone back to chapter 8, you've seen that there's no
way to get the current file position back fromthe system There isn't, nor
is there a way to get the REMBA either. Sonebody out there will probably find
a way via PEEKS and so on, but the fact remains that BASIC itsel f doesn't
have provision for telling you sinply and directly.

To show that we are indeed positioned at the record' s 2nd item the integer
we'll read just that field. Type in:

GET 1,*,,1; : PRINT I : GOTO 10
The systemwi || respond with:
2

-1 EOF TEST 171 ECF RBA
171 NEXT RCD RBA 152 REMRA

Did you notice the variable type of "I1"? It's single precision, but the file
itemtransferred to it was an integer. The changing of type between a file
itemand a variable is allowed, so long as it is allowed in BASIC

Now |l et's go back and transfer the integer and the single precision itens
using the REMBA to position the file before the transfer. Type in:

GET 1,%,,K J; : PRINT J; K: GOTO 10
The systemwi || respond with:

4 2

-1 $ EOF TEST 171 % EOF RBA

171 ! NEXT RCD RBA 152 # REMRA
The REMBA was set to the file's RBA at the start of the previous GET.
Regar dl ess of the nunber of fields transferred or bypassed, the starting byte

RBA i s renenbered. Again, none of the LOC functions has changed.

To prove that the REMBA hasn't changed with the nultiple file itemtransfer,
let's transfer the integer and the double precision itenms next. Type in:

GeET 1,%,,J,,1; ¢ PRINT I; J : GOTO 10

The systemwi || respond with:

APPENDI X A A- 24

8 2
-1 $ EOF TEST 171 % ECOF RBA
171 ! NEXT RCD RBA 152 # REMRA

Notice that by onmitting a variable nane in the IGEL in the position where the
single precision file itemoccurs, that the file itemis bypassed. Again,
both file itens have their types changed as they are noved to the variabl es.

Now we'll try sone RBA positioning to see how that works. Type in:
GET 1,10,,A%$; : PRINT A$: GOTO 10

The systemwi ||l respond with:
ABCDEF

0 $ EOF TEST 171 % EOF RBA
19 ! NEXT RCD RBA 0 # REMRA

The use of a specific RBA provided by the progranmer, whether it's a nunber

as in this exanple, or sone variables contents, or an expression, causes the
RBA to be noved to the next record pointer just as the REMRA is noved there

when "#" is used for fp. The sequence of actions is the same fromthat point
on for the two fp's just nentioned.

Let's try the other RBA positioning technique. Type in:
=152 : CET 1,!$l : GOTO 10
The systemwi || respond with:
0 $ ECF TEST 171 % ECF RBA
152 ! NEXT RCD RBA
BAD FI LE MODE
Hey! Was that supposed to happen? You bet! Both the REMRA and REMBA were
tagged as invalid by the systemdue to the fp type used. It does nothing nore
than set the next record pointer. No data transfer occurs.
Now we' Il try it again, but this time with a "later" data transfer. Type in:
GET 1,!$19 : GET 1,,,A$: PRINT A$: GOTO 10
The systemwi || respond with:
OUT OF STRI NG SPACE
Anot her error? Wiy? Because when we started this session, we did a CLEAR 50,
and the string we're trying to transfer is 130 bytes long. Don't forget that
NEWDOS/ 80 doesn't change the string variable's pointer to point to the
buffer, but noves the string to the BASIC string space at the top of nenory

as if a LET statenent had been executed. Now type in:

GET 1,,,(10)A$; : PRINT A$: GOTO 10

A- 25 APPENDI X A

The systemwi || respond with:

kkkkhkkhkhkk*k

0 $ EOF TEST 171 % ECOF RBA
152 ! NEXT RCD RBA 19 # REMRA

NOTE: the sane file itemwas inputted as for the previous GET. Due to the
error that occurred, the filearea, but not the data, was restored to what it
was at the beginning of that previous GET. Note that only the first 10
asterisks of the 120 in the file itemwere transferred to A$.

That just about exhausts the fp's we can use. The ones not covered yet are
fairly well explained in chapter 8. It is tinme nowto try sone updating of
records, both in whole and in part. Before we can do that however, the file
nmust be opened for input and output. Type in:

CLOSE : OPEN "R', 1, "MJ DAT", "MJ' : GOTO 10
The systemwi || respond with:

0 $ EOF TEST 171 $ ECF RBA
0 I NEXT RCD RBA

That is just as it was after the open for input only. The nbpde we just
specified allows the file to be expanded (which we will do shortly). If we
wanted to not allow the ability to expand the file beyond its existing EOF
we woul d have specified node "D".

First, let's sinply replace the first record on the file with a single field.
Type in:

PUT 1,,,"RECORD REPLACED'; : GOTO 10
The systemwi || respond with:

0 $ EOF TEST 171 % EOF RBA
19 I NEXT RCD RBA 0 # REMRA

Notice that the next record pointer is pointing to the second record, just as
if a GET were issued.

Now, let's replace the double precision value in the third record with 3
times its conplenent. Type in:

=152 : CGET 1,!'1,,,,;
CET 1!*!!D#; PLJT 1,$,,3*'D#, (I)TO 10

The systemwi || respond with:

-1 $ EOF TEST 171 % EOF RBA
171 ! NEXT RCD RBA 152 # REMRA

APPENDI X A A- 26

Again, the systemis ready to process the next record even though it's
positioned at EOF. We can't transfer any information fromthis file position,
but can wite additional new records to the file.

To denponstrate this, type in:
PUT 1,,,"THIS I S THE FOURTH RECORD"'; : GOTO 10
The systemwi || respond with:

-1 $ EOF TEST 198 % EOF RBA
198 I' NEXT RCD RBA 171 # REMRA

It's easy to see that the file has been extended. You should be aware that
the new EOF hasn't yet been recorded in the FPDE in the directory. If there
were to be a power outage at this point, our little exanple file would show
no change fromwhen we first opened it for update. W could ensure that the
file has the new data recorded in it by doing a PUT using the fp of & That
would only wite the buffer to the file. To update the FPDE s EOF val ue,
either a CLOCSE or a PUT fan, & nust be done. A CLOSE will also wite out an
updated buffer, if any.

Now let's go back to the second record and replace its single file itemwth
several smaller ones. W'll do this using a couple of PUTS. Type in:

PUT 1,!19,,"I TEM 1", 3. 14159*2;
PUT 1,*,,"I TEM 3", 4, 10D2;
PUT 1,*,,"LAST | TEM RECCRD 2"; : GOTO 10

The systemwi ||l respond with:

$ EOF TEST 198 % EOF RBA
152 ! NEXT RCD RBA 19 # REMRA

Once again, the next record pointer has the RBA of the record follow ng the
one we're processing, and the REMRA has the RBA of the record | ast processed.
Note that all three PUT statenents wote itens into the sane record.

To show that the record has been updated type in:

GET 1,#,,A%,1,B%$,J,K C$; : PRINT A$,B$, C$,1,J,K: GOTO 10
The systemwi || respond with:

| TEM 1 | TEM 3 LAST | TEM I N RECORD 2

6.28318 4 1000

0 $ EOF TEST 198 % EOF RBA
152 ! NEXT RCD RBA 19 # REMRA

That's pretty conclusive, isn't it? If we were to try to GET nore data using
the fp =*, we would find a "RECORD OVERFLOW error staring back at us. W
could, if we wanted to, add nore data to this particular record, just as |ong
as we didn't exceed its total original |length of 131 bytes.

A- 27 APPENDI X A

The only thing remaining to be done is to update the ECF value on disk. To do
this, simply type in:

CLCOSE
It should be noted, we could have used the statenent:
PUT 1, &&

to update the EOF into the directory without closing the file. W could then
have continued processing the file.

Once again, let's exanmine the file using SUPERZAP. Now you'll find SOR bytes
at displacenments 0, 13, 98 and AB. Examine The first record closely. The
string nmarking byte (hex 8F) shows a length of 15 bytes. Adding hex F to the
starting displacenment of the string yields a result of hex 11. Looking at

t hat displacement, you'll find the first of two bytes of hex 00. These are
fill bytes which are skipped by the systemas GETS are processed. If we were
totry to retrieve two strings fromthe first record, as were there before
our little updating session, we'd get a "RECORD OVERFLOW error in response
as there is now only one string itemin the record. The system pads out a
logical record with fill itens when it finds that the data being witten to
the record has fewer bytes in it than were in the record to start wth.

In the second record, starting at displacenent hex 13, you'll find the SOR
byte followed by a marking byte defining a string of 6 bytes. Counting down
to the 7th byte fromthat marking byte, you'll find a marking byte defining a
single precision nuneric value. Five bytes further on you'll cone across a
mar ki ng byte defining another 6 byte | ong string. Seven bytes down fromthat
byte is a marking byte defining an integer. The third byte beyond that is a
doubl e precision nunber marking byte. Nine bytes fromthere is the marking
byte for the last itemin the record, a hex 8A, defining a 10 byte |ong
string. The remai nder of the record following the string to displacenent hex
ABis filled with fill bytes. If it becane necessary to replace record 2 with
totally new data, the new record could take as many as 133 bytes, SOR byte

i ncluded. All that is there right now would be replaced if the proper fp's
wer e used.

The remai nder of the record should be quite self-explanatory. The only

di fferences between its first contents and now are the double precision
nunber at di splacenent hex A2, and the new fourth record starting at AB and
having its |last byte at Cb.

Thi s discussion doesn't show all that can be done with MJ files, of course.
It is intended to show many of the abilities built into NEWDOS/ 80 BASIC file
support. For those of you with data base experience, the partial-record I/O
shoul d | ook sonewhat famliar. It is, after all, one of nany data base
abilities to update a single field in a record. G anted, NEWOS/ 80 doesn't
have the built-in file itemsecurity that data bases have; that is something
you'll have to build into your systems as you see fit. But for now, you'l
have to agree that NEWDOS/ 80's abilities are far superior to anything el se
avai |l abl e on the market.

APPENDI X A A- 28

For those of you getting into file processing for the first time, don't be
daunted by the apparent conplexities of the nethods available to you. The
best thing that you can do is to continue on with exercises simlar to what
we' ve just done here. As you practice, the concepts will seemto becone
easier to understand and work with.

A-29 APPENDI X A

ME _FI LES

Now t hat you' ve experinmented with the MJfile type and feel somewhat nore
confortable with some of NEWDOS/80's capabilities, we'll go on nowto
experiment a little bit with the M- file type. Returning to chapter 8 you'l
find that an MF file type is made up of narked itens, and is record-segnented
with all records having the sane length. In other words, it is a marked item
fixed length record file. The length of the record is defined to the system
by the Irecl operand of the OPEN statemnent.

Like the MJ file type the MF file type can be updated with new data itens on
a record by record basis. The updating data need not be the sanme data type or
I ength as the original data, nor does there have to be the same nunber of
items in the updated record as there were to start with. You rnust be mi ndful
of the file position being used during the updating of an MF file, just as
you were with the MJ file. The update can start in the mddle of the record
just as easily as at the beginning; the sanme fp controls are available to you
for M- files as there were for MJfiles. Don't |ose sight of the fact that
when updating marked itemfiles, all bytes fromthe current file position to
the end of the record are re-witten, whether you had really intended that to
happen or not.

We' Il use the sane technique to experinent with the M- file as we used for
the MJ file. First we'll have to create a file for use as the experinental
base. Enter the follow ng BASIC program and save it in case you need it
again |later.

10 OPEN "O", 1, "M/ DAT", M, 20

20 PUT 1,,,"STRINGL", "STR 2", "STR3";
30 PUT 1 "NMAXI MUM STRING (19)";

40 I1'=4 : 1#=8 : 1%2

50 PUT 1,,,1#1!,1%
60 PUT 1,,,1#*10,1!*100, 1% 1000;
70 CLCSE

Now run the programto create the file. Wen its done, run SUPERZAP usi ng DFS
to display sector O of the file just created. The first thing you'll notice
is that there is no SOR byte at the begi nning of the sector. That's because
only MJ files use themto define the start of records which are all presuned
to have different lengths; other record-segnented file types have fixed

I ength records so the system "knows" where each record begins. In the first
byte is a marking byte describing a 7 byte long string. At displacenent 8 is
the marking byte describing a 5 byte long string, and at di splacement E one
describing a 4 byte string. Progressing down to displacenent 13, where the
next narking byte should be, you'll find a padding byte (00 hex). Renenber
that the records in the file we created are 20 (14 hex) bytes long. W wote
3items of 7, 5 and 4 bytes length respectively giving an aggregate byte
count of 19; one fill byte is used to conplete the 20 byte record

The second record starts at displacenent 14, where you'll find a marking byte
describing a 19 (13 hex) byte long string. The one itemis the entire record.
The third record starts in displacenent 28. You'll find marking bytes |ocated
at 28, 31 and 36 describing a double precision item a single precision item
and an integer respectively. This record has an aggregate data length of 17
bytes, and thus requires 3 padding bytes, which you'1ll find in displacenents

APPENDI X A A- 30

39 through 3B inclusive. The fourth and |last record we wote has a data
structure identical to that of the third record. Its marking bytes are

| ocated at displacenments 3C, 45 and 4A; its padding bytes are in

di spl acenents 4D t hrough 4F. The data beyond 4F is unpredictable. It is in
fact whatever was in the sector before we created the file.

Return to BASIC and retrieve the location displaying programoriginally used
when experinenting with MJ files. It should read:

10 PRINT LOC(1)$; "$ ECOF TEST "; LOC(1)% "% EOF RBA"

20 PRINT LOC(1)!, "! NEXT RCD RBA ";

30 IF LOC(1)!=0 PRINT ELSE PRINT LOC(1)#; "# REMRA"
We' Il use this programin the sane way we did fox the MJ file experinents to
show the results of GETS and PUTS on file position. The experinments we'll go
t hrough won't be as thorough as the ones done for the MJ file. Instead
they' Il touch on the major differences between the two file types.
To start with, we'll open the file and exam ne the results of the LOC

statenents. Type in:
OPEN "1", 1, "M/ DAT", "M, 20 : GOTO 10
The systemwi ||l respond with:

0 $ EOF TEST 80 % EOF RBA
0 I NEXT RCD RBA

Except for the EOF RBA, the results are the same as for the MJ file. The
systemis ready to process the record starting at displacenent 0, the first
| ogi cal record
Now type this in:
GET 1,,,,A%$,B$%; : PRINT A%, B$: GOTO 10
The systemwi || respond with:
STR 2 STR3
0 $ ECF TEST 80 % ECF RBA
20 ! NEXT RCD RBA 0 # REMRA
Notice that the last two itens of the record were transferred. This is due to
the null where the first variable nanme would nornally reside (after the third

comma) .

Fromthe current file position we can go back and transfer again the first
two itens of the record by using REVMRA positioning. Type in:

A-31 APPENDI X A

GET 1,#,,A$,B%; : PRINT A$,B$: GOTO 10
The systemwi ||l respond with:

STRI NGL STR 2
0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

Not hi ng overly tricky there. As with MJ files, we can continue processing the
sane record

To do just that, type in:

GET 1,*,,C$; : PRINT C$: GOTO 10
The systemwi || respond with:

STR3

0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

The fp "*" value tells the systemto continue processing fromwhere it |eft
of f on the preceding GET or PUT; in other words, fromthe current file
position. If the GET had asked for two or nore itens, record overflow error
woul d have occurred as the record, at that point, contained only one nore
item

Now let's try processing the fourth logical record without first processing
the second or third. Type in:

GET 1,!(4-1)*20,,J,K L; : PRINT J; K L : GOro 10
The systemwi || respond with:
80 400 2000

-1 $ EOF TEST 100 % EOF RBA
100 ! NEXT RCD RBA 80 # REMRA

Notice that the expression used in the !rba type fp specifies a val ue equa

to 60. The numbers thensel ves represent the |ogical record nunber we really
wanted, minus 1, tinmes the record length. !rba positioning in a M file, or a
FF file too, is quite sinple, as you can see. Just as sonething for you to do
on your own, try the same statenment as you just entered, using the rn form of
fp instead of the ! RBA form

To do this, you should have changed the PUT statenment to be:
GET 1,4,,3,k,I;

Now let's try sone sinple random updates to the records and check the
results. Prepare the file for this by typing in:

CLOSE : OPEN "R*, 1, "M/ DAT", "M, 20 : GOTO 10

APPENDI X A A- 32

The systemwi || respond with:

0 $ EOF TEST 80 % EOF RBA
0 ! NEXT RCD RBA

Those are exactly the sane results as when we opened the file for input.
Again, no big surprise there.

As a starting point, let's replace the first record. Type in:
PUT 1,,,1%; : GOTO 10
The systemwi ||l respond with:

0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

The responses show that the first logical record has been processed. You
shoul d be aware that even though the next record RBA shows a value of 20, the
current file positionis in fact equal to 1 as the above PUT repl aced the
entire contents of the record with a null string (an 80H marker byte only)
and 19 bytes of zeroes, then repositioned the file back to the byte follow ng
the null string. If we were to wite to the current file position using fp =
*, the PUT's first marking byte would be placed in the second byte of the
file.

Just for fun, let's add two fields to the record we just updated. Type in:
PUT 1,*,,"2",2; : GOTO 10
The systemwi || respond:

0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

We'll see the results of this |last update in a nonent.

Now, let's add two nore records to the end of the file. Type in:
PUT 1,!%,"RCD 5"; : PUT 1,,,"RECORD 6"; : GOTO 10
The systemwi ||l respond with:

-1 $ EOF TEST 120 % EOF RBA
120 ! NEXT RCD RBA 100 # REMRA

The nunbers indicate that the file is now six records |ong.

Close the file now, and enter the SUPERZAP program use the DFS function to
di splay sector zero of the file again. The records in the file begin at

di spl acenents 0, 14, 28, 3C, 50 and 64 respectively. The nmarking byte at

di spl acenent O describes a null string; the one at 1 a string 1 byte |long and
the one at 3 an integer. Notice that the renainder of the record has been
padded with fill (00 hex) characters. The contents of the fifth and sixth

A- 33 APPENDI X A

records shoul d need no expl anation. You should notice that the data beyond
the sixth record was not nodified by our little updating session. The system
ignores this area of the sector as it is file space at and beyond the file's
EOF and therefore not really part of the file.

As short as this session was in conparison to the one for MJ files, you
shoul d now be aware that M- files are not at all hard to nmanage. Dependi ng
upon your own | eanings, an individual record can be retrieved for update by
either Irba positioning as shown in the exanple, or by using the record
nunber itself On fp positioning).

APPENDI X A A- 34

M_FILES

Now we come to the last of the marked itemfiles - the M file type. Its nost
i mportant differences fromthe MJ and MF file types are:

1. M files cannot be updated.

2. M files have no systenrecogni zable record | engths.

These differences restrict this file type to being used for conpact reference
file only, as they can only be witten to or extended, and |l ater read again.
Also, to get to any specific data group or itemin a random access fashion

Irba positioning (or its |ogical equivalents) nust be enpl oyed.

Because you've seen marked itemfiles in sone detail by now, the experinental
files accesses we've enployed to this point will be quite limted and
intended to anplify the differences in structure and access nethods rat her
than simlarities.

To start with, retrieve the programwe used to create the MF file and change
it to read as follows:

10 OPEN "O', 1, "M/DAT", "M"

20 PUT 1,,,"STRINGL","STR 2", " STR3";
30 PUT 1,,,"MAXI MUM STRI NG (19)";

40 11=4 : 1#=8 : 19%2

50 PUT 1,,,1#, 1!, 1%
60 PUT 1,,,1#*10,1!*100, 1% 1000;
70 CLCSE

Note that only line 10 of the programis changed fromthe M- file exanple.

Save the programif you wish, and run it. A user-segnented file will be
created containing sone 73 bytes of rather unlikely-Iooking data. Now exit
BASI C and enter SUPERZAP, and use the DFS function to display sector zero of
the file just created.

You'll see that there aren't any SOR marking bytes or padding itenms in the
sector. There aren't any records in so far as BASIC is concerned, just a
string of data itens. The data in the file and its structure and organi zati on
are entirely the responsibility of the programmer. Al you'll see in the
sector is a series of contiguous marked data itens. Good data design on the
programer's part demands that there be sone rational, coherent data
structure for the data itens to be at all usable

All there is in the file we created is unrelated data itens. To access them
sequentially would require the inti mate know edge we have: there are four

strings and six nunmeric itens. To access themrandonmly requires that we know
the specific RBAs of the marking bytes. OGtherwi se at best, a "BAD FI LE DATA"
error will be raised by the systeny at worst, it will return incoherent data

Now, |et's exam ne the SUPERZAP dunp of the sector. The string narking bytes
occur at displacenents 0, 8, E and 13. The first set of nuneric itens have
their marking bytes at 27, 30 and 35; the second set at 38, 41 and 46. W'l
use these nunbers (displacenents, all in hex) in just a nmonment to access the
data. By the way, the EOF RBA is 49.

A- 35 APPENDI X A

Return to DOS BASIC at this tinme, and | oad the same |ocation printing program
as you used for MJ and M- files. This programw |l aid in showi ng the I ack of
| ogi cal record support afforded to M files by the system

As usual, the file nust be opened for access. Type in:
OPEN "I1", 1, "M/DAT", "M" : GOTO 10
The systemwi || respond with:

0 $ EOF TEST 73 % EOF RBA
0 ! NEXT RCD RBA

As with other file types, the input node open positions the systemso that
the next byte to be processed is the first byte in the file, if a (null) fp
i s used.

To show a different positioning resulting fromopen, and to extend the files
besi des, type in:

CLCSE : OPEN "E", 1, "M/DAT", "M" : GOTO 10
The systemwi || respond with:

-1 $ EOF TEST 73 % EOF RBA
73 ! NEXT RCD RBA
BAD FI LE MODE I N 30

This last nessage is due to the fact that the location printing programtries
to print the REMRA val ue when it has just been marked invalid by the system
as a result of the open itself. (The location printing programtries to

di spl ay REMRA because the next record RBA is non-zero.)

The file is nowin an output node. To prove this we'll extend the file by
three integer itens. Type in:

PUT 1,,,-1,-2,-3; : GOTO 10
The systemwi || respond with:

-1 $ EOF TEST 82 % EOF RBA
82 | NEXT RCD RBA 73 # REMRA

Notice that the EOF RBA is 9 bytes higher in the file, and that the REMRA has
the original EO-F RBA value. In M processing the REMRA is always set to the
sanme val ue as the REMBA; they both equal the file position at the beginning
of the GET or PUT data transfer.

APPENDI X A A- 36

Now, let's go back and reference a few of the data items. Type in:

CLCSE : OPEN "R', 1, "M/DAT", "M"
GET 1,!19,,A%;, : PRINT A$: GOTO 10

The systemwi || respond with:

MAXI MUM STRI NG (19)

0 $ EOF TEST 82 % ECF RBA

39 | NEXT RCD RBA 19 # REMRA
The REMRA reflects the starting RBA of the GET, and the next record RBA
points to the first of the numeric items. If no overriding fp were specified,
that is where the next GET would start examining itens for transfer.

To show this, type in:

GET 1,,,,J%K#1!; : PRINT J% K# |! : GOTO 10
The systemwi || respond:
4 2 80

0 $ EOF TEST 82 % EOF RBA
65 ! NEXT RCD RBA 39 # REMRA

Notice that once again all the itens in the |GEL are of a different numeric
type than the file itens being transferred to them One of the nmarked item
file's intrinsic powers is this nuneric type conversion.

To show that in an M file the REMRA and REMBA are the same, we'll have to do
Fhe sanme basic thing twice, with the appropriate fp characters. First type
in:

CET 1,#,,1,3,K; : PRINT I; J; K: GOTO 10
Then enter:

GET 1,%,,1,J3,K : PRINT I; J; K: GOTo 10
In both cases, the systemw |l respond with:

8 4 2

0 $ EOF TEST 82 % EOF RBA
56 ! NEXT RCD RBA 39 # REMRA

QE D Don't lose sight of the fact that this REMRA equal s REMBA rel ati onship
is true at all times for field item M and FI files, and for MJ, M~ and FF
files only when the GET/PUT data transfer starts at the beginning of a

| ogi cal record.

Now, to show that an M file can be extended after having been opened with
node "R', type in:

A- 37 APPENDI X A

PUT 1,1%, 15,-15; : GOTO 10
The systemwi ||l respond with:

-1 $ EOF TEST 88 % ECF RBA
88 | NEXT RCD RBA 82 # REMRA

The ECF has been extended by 6 bytes as expected. The file is left positioned
to continue adding data to the end of the file if fp = (null) or * are

enpl oyed.

Thi s about exhausts the experinments we can performon M files. On your own,
you can try to update a single existing item (You'll get a "BAD FILE MODE"
error -- chapter 8 specifies that M files cannot be updated.) If you are
unsure of what will happen if an M file has been opened with some node, and
a certain fp is specified in a GET/PUT, create the situation with a snall
file fromBASIC s cal culator node and try it - it's the surest way to find
out what does happen.

APPENDI X A A- 38

FF _FI LES

The fixed itemfile is different fromthe marked itemfile in severa
respects. To start with, it has no marking bytes for each itemor record; al
itemdescription is taken fromthe IGEL, not the file. Because of this, if
you describe a string itemof 20 bytes to be read, that's exactly what will
happen, even if the data witten to the file originally was nuneric. Also, it
is required that numeric itens witten to file are read back as the sane
type; otherwise file synchronization is |ost.

A second najor difference is that fixed itemfiles can be updated using true
partial-record I/O That is to say, a single field in a fixed itemrecord may
be updated wi thout affecting any surrounding fields, whereas, in a narked
itemfile, the field to be changed and all other fields to the end of the
record had to be witten.

Athird significant difference is that the expressions in the | GEL cannot be
anyt hi ng nore than variable nanes, with mandatory (len) prefixes for string
itens. This is due to the indetermnate type/length of an itemresulting from
an expression.

Fixed itemfiles cone in tw types: FF files, in which all records have the
sane |length, and FI files which have no BASIC detectable records. For the
nonent, we'll concern ourselves with only the FF type file.

As with the marked item discussions, we'll create an FF file, then experiment
with it in "calculator node". Enter the follow ng programand save it if you
wi sh. Then run it to create the FF file.

10 CLEAR 100

20 OPEN "O', 1, "FF/DAT", "FF', 20
30 PUT 1, %40 : GOTO 50

40 (20)18$;

50 LSET | $=" ABCDEFI JK"

60 PUT 1,,,(20)1$;

70 LSET | $="12345678901234567890"
80 PUT 1,,,(20)1$;

90 | %=2: || =4: | #=8

100 PUT 1,,,(4)1$,1%1!,1#

110 1 %19610 : 1!=11*100 : |#=I#*1000
120 PUT 1,,,(4)I1$,1%I1!,14#
130 CLOSE
You will have noticed that this programis a little different than those used

for the marked itemfiles. For one thing, the string itens are witten from
variables rather than literals in the | GEL proper. Additionally, no
expressions as such were used to place nuneric data on the file. In assigning
values to the variable I'$, LSET was used instead of the (inplied) LET. This
latter was done to preserve the length of 1$ set up in the pseudo FIELD
operation done in lines 30 and 40. This pseudo FIELD operation is not
required if your programcan live with the fact that variables providing
string data to the file are NOT padded on the right while variables receiving
data fromthe file are padded. Note too that all string itens in the | GELS

A- 39 APPENDI X A

have length prefixes. It's these prefixes that actually determni ne how nany

bytes of string data are to be transferred to/fromthe file, not the pseudo
FI ELD operation (refer to lines 100 and 120). Remenber that the file string
itens are padded or truncated on the right as necessary to neet the |l ength

prefix's demands.

If we had el ected NOT to use the pseudo FIELD function, the program could
have been witten:

10 CLEAR 1000

20 OPEN "O', 1, "FF/ DAT, "FF", 20
50 | $=" ABCDEFI JK"

60 PUT 1,,,(20)18$;

70 |1$="12345678901234567890"

80 PUT 1,,,(20)1$;

and so on

Now run SUPERZAP, and use the DFS function to exam ne the sector just

witten. You'll see that the first record (hex 11 bytes |ong) has the nine
data bytes we had intended to transfer padded to 20 bytes with 14 bl anks (the
bl ank padding is due to the use of LSET in the first encodi ng above and due
to the PUT in the second). The second record has no padding - the string item
we wrote was twenty bytes long in the first place (had it been | onger, the
LSET in the first encodi ng woul d have truncated the variable 1$ on the right
and the PUT in the second would have truncated the file iten). The third and
fourth records have identical formats: a four byte string, a two-byte integer
val ue, a four-byte single precision value, an eight-byte doubl e-precision

val ue and two paddi ng bytes. Again notice that there are no marking bytes to
describe the type of the file item The file's EOF is at displacenment 80 (hex
50). Any bytes in the sector at or beyond this displacenment were unnodified
by the running of the program as those bytes are not part of the file.

Rel oad the programthat was used to display the results of the LOC function
as was used in the MJfile experinents - we'll use it once again to
denonstrate how file position is naintained.
To denonstrate the file's position after open, type in the follow ng:

OPEN "I", 1, "FF/ DAT", "FF', 20 : GOTO 10

The systemwi || respond with:

0 $ EOF TEST 80 % EOF RBA
0 I NEXT RCD RBA

As expected, the systemis positioned to process the next (first) record on
the file.

To transfer the first record, type in:
GET 1,,,(20)A$; : PRINT LEN(A$); A$: GOTO 10

The systemwi || respond with:

APPENDI X A A- 40

20 ABCDEFI JK
0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

As you can see, 20 bytes were transferred to the variable named in the | GEL
We could just as easily have transferred a part of the record i f we had
want ed.

Just to show how this can be done, we'll assune that the record consists of 3
6-byte items and transfer themindividually in separate GETS. O course we'l
have to use sone special fp values to acconplish this task. Type in:

GET 1,#,,(6)A$; : GET 1,*,,(6)B$; : GET 1,*,,(6)CS;
PRINT LEN(A$); A$: PRINT LEN(B$); B$: PRINT LEN(C$); C$: GOTO 10

The systemwi || respond:

6 ABCDEF

6 1IJK

6

0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

Here we've read 3 fields fromthe same record using as nmany GET statements to
do it. This shows one of the freedons of partial record I/Q

Anot her of the freedons available to you is the ability to skip over bytes in
arecord to get to the ones you really want. W'll do that now with the
second record. Type in:

GET 1,,,(12)%,(4)A$; : PRINT LEN(A$); A$: GOro 10
The systemwi || respond with:
4 3456

0 $ EOF TEST 80 % EOF RBA
40 | NEXT RCD RBA 20 # REVRA

The 12 bytes we skipped could just as easily have been 6 integers as a 12
byte ASCI| string. The point being made is that the system neither knows nor
cares what data types or itens are being skipped, only that Men) bytes are
bei ng ski pped.

Now we'l|l make a slight error in processing the fourth record - we'll forget
for a noment that was witten with a 4-byte string at the start. Type in:

GET 1,4,,1%I1!,1#, : PRINT 1% 1!; I# : GOTO 10
The systemwi || respond with:
12849 0 O

-1 $ EOF TEST 80 % EOF RBA
80 ! NEXT RCD RBA 60 # REMRA

A-41 APPENDI X A

Certainly not what we wote! It does point out the need for consistent record
description within FF (and FI, for that matter) files. Unlike a narked item
file, in which this error woul d have been detected and reported, the fixed

i tem processi ng denands that whatever is at the current file position be
transferred to the naned variable; no checks are done or can be done to
prevent this type of error. (The reason for the zero values showing in the

di splay for the single and doubl e-precision nunbers is that their exponent
bytes were zero).

You'll notice that we're now al so positioned at ECF, or at |east apparently
so. In fact the current file position, in so far as the systemis concerned,
is the 15th byte of the record. The LOC(fan)! returns the RBA of the start of
t he next sequential record to be processed; that is, the one which would be
processed with an fp = (null).

Just to show that we are positioned at the 15th byte, type in:
FOR 1=1 TO6 : GET 1,*,,(1)A%; : PRINT ASC(A$); : NEXT
The systemwi || respond with:
0O 0 122 141 0 O

Alittle deciml-to-hex conversion will show the non-zero values to be the
nost significant manti ssa byte and exponent byte respectively of the double
preci sion nunber originally witten as record 4.

Now |l et's go back and process record 4 correctly. Type in:
GET 1,4,,(4)A%, 1%I1!,1#, : PRINT I$1%I1!,I1# : GOTO 10
The systemwi ||l respond with:

1234 20 400 8000
-1 $ EOF TEST 80 % EOF RBA
80 ! NEXT RCD RBA 60 # REMRA

Just like it was witten in the first place. You' ve noticed, of course, that
the 4th record was processed using the rn formof the fp specification. Wen
devel oping indices to fixed-length record files (FF, MF and field item) a
coupl e of bytes can be saved by using integer itens containing record nunbers
for the indices instead of single precision items containing the RBA val ue
returned fromsome LOC function. Random access to a fixed-length record file
is just as reliable using rn positioning as using RBA positioning, and
perhaps a little easier to understand when exam ning an index itens

cont ents.

Now let's close the file and open it for sonme exanpl es of updating. Type in:
CLOSE : OPEN "R', 1, "FF/DAT", "FF', 20 : GOTO 10

The systemwi || respond with:

APPENDI X A A-42

0 $ EOF TEST 80 % EOF RBA
0 ! NEXT RCD RBA

What we'll concentrate on is partial-record I/O It's in this area that the
fixed itemfiles really have it over marked itemfiles. Let's assune that the
first and second records in our file have the sane format: 4 5-byte |ong
itenms each. Now let's update the 2nd itemin the 1st record, and the last in
the 2nd record. Type in:

A$="2ND"' : PUT 1,1,,((2-1)*5)$, (5)A%;, : GOTO 10
The systemwi || respond with:

0 $ EOF TEST 80 % EOF RBA
20 ! NEXT RCD RBA 0 # REMRA

Now, to update the 2nd record, type in:
A$="LAST" : PUT 1,2,,((4-1)*5)#, (5)A$;, : GOTO 10
The systemwi || respond with:

0 $ EOF TEST 80 % EOF RBA
40 ! NEXT RCD RBA 20 # REMRA

You may have noticed that positioning to the field in the record was done by
conputing the number of bytes to be skipped. In the 2nd record, the
positioning to the last 5-byte field didn't sinply skip over the precedi ng 15
bytes, but nulled themout in the process. W' Il see the effects of this

| ater.

Now let's update the integer items in the 3rd and 4th records. Type in:

| %-50 : PUT 1,3,,(4)$,1% : PUT 1,4,,(4)$, 1%
GET 1,3,,(4)J$,J%J!,J# : PRINT J$, J%J!;J# : GOTO 10

The systemwi || respond with:

1234 -50 4 8
0 $ EOF TEST 80 % EOF RBA
60 ! NEXT RCD RBA 40 # REMRA

The first line of the response shows that our update affected only the one
field we wanted to mess with - the other fields in the record were not

nodi fied. In M- and MJ files having simlar records (allow ng for marking
bytes), the integer, single-precision and doubl e-precision values would al
have had to be specified in the IGEL in order to have updated just the

i nteger. That statenent isn't quite conplete: the single and doubl e-precision
nunmbers woul d have to have been read first to maintain the correct val ues;

al so, they could have been witten back individually using the various fp

val ues. Again, here in an FF file, we had only to skip over the bytes we
wanted to, and wite the single field to be nodified.

A- 43 APPENDI X A

Wiile in the "R' node, any NEWDOS/ 80 file nay be extended. To show this
feature, type in:

PUT 1,6,,J%J%J% : GOTO 10
The systemwi || respond with:

-1 $ EOF TEST 100 % EOF RBA
100 ! NEXT RCD RBA 80 # REMRA

In this exanple we entirely skipped over the 5th record of the file. The
system in order to mamintain the necessary record orientation, created and
wote a 5th record containing only nulls before witing the 6th record as we
speci fi ed.

Now cl ose the file, run SUPERZAP, and use the DFS function as before to
exam ne the 1st sector of the file. You'll notice that the 2 string records
(numbers 1 and 2) have been updated as required, that the integer items in
the Ad and 4th records both read CEFF, that the 5th record (displacenents
50-63 hex inclusive) is all nulls, and that the 6th record contains 3
repetitions of CEFF hex, followed by 14 nulls.

APPENDI X A A- 44

FI_FILES

W now cone to the |ast of NEWDOS/ 80's unique file types: the FI file. Like
the M type file, it is a user segnented file; and like the FF type file, it
is made of fixed itens, rather than narked itens. Unlike the M type file,
the FI file can be updated. This attribute makes it a little nore powerful in
its application than the M type file.

As we have done with each file type up to this point, we'll create a file by
runni ng a BASIC program then experinent with that file fromthe BASIC cal cu-
| ator node. To create the file, enter, save and run the follow ng program

10 OPEN "O', 1, "FI/DAT", "FI"
20 A$="1ST STRING' : B$="STR 2"

30 19%2 : 1!1=4: |#=8
40 PUT 1,,,(15)AS$, (6)BS, 1% 1!, I #
50 | %19%-1000 : 1!=I!1*-100 : |#=I#*-10
60 PUT 1,,,(15)BS$, (6)AS$, 1% 1!, 14#
70 CLOSE
The first thing you'll have noticed is that we never did a pseudo FIELD

operation Up = X) as we did for the FF type file. This is because it isn't
absol utely necessary. BASIC will allocate the strings on GETS as it needs to,
and the file support will pad/truncate. the string file itens as needed to
make them fit the I ength specified by the I1GEL item prefix.

The second thing to notice is that the PUTS both put out data groups having
identical formats: a 15-byte string, a 6-byte string, an integer, a single
preci sion value and a double precision value. In a larger file, such a
consi stent data group fornmat would nake it eligible for an FF type file, as
all data groups would have the sane | ength and structure.

Load the programused to print the LOC function results used in all previous
experiments, and type in:

OPEN "R', 1, "FI/DAT", "FI" : GOTO 10
The systemwi || respond with:

0 $ EOF TEST 70 % EOF RBA
0 ! NEXT RCD RBA

As expected, the file is positioned so that the first GET or PUT will begin
processing at the first byte of the file if fp = (null) or * is specified.
This would be the case for all open nodes except "E', which would position
the file to the EOF RBA

Knowi ng the data structure of the two groups that we wote makes it
reasonably easy to access the second group via RBA positioning. Type in:

GET 1, 135,, (15)A1$, (6) A2$, 1% | !, | #;
PRINT A1$, A2$, 1% I1; I# : GOTO 10

A- 45 APPENDI X A

The systemwi || respond with:

STR 1ST ST -2000 -400 -80
-1 $ EOF TEST 70 % EOF RBA
70 ! NEXT RCD RBA 35 # REMRA

By processing all the data in the second data itemgroup, the file is
positioned at EOF as the LOC(fan)$ shows.

FI files can be extended in the sane nanner as FI files. Let's do just that,
and | eave an area of 10 bytes between the current file position and the new
data. Type in:

L=LOC(1)! : J=EXP(1) : PUT 1,,,(10)#,J; : GOTO 10
The systemwi || respond with:

-1 $ EOF TEST 84 % EOF RBA
84 | NEXT RCD RBA 70 # REMRA

The variable L contains the file location of the 10 paddi ng bytes we wote.
We'l|l use that in a mnute. Notice that in the PUT statenent, the variable J
was not suffixed by a type character. J has the default type of single
precision floating point and 4 bytes were witten into the file. Though using
explicit type suffix characters in IGELs is not required as it was for
NEWDOS/ 80 version 1, it is highly recommended that you do so.

Now, |let's go back and put sonething in that padding area we just wote.
We' Il use RBA positioning again to get to that area of the file. Type in:

A$="ABCDEFG' : PUT 1, ! L, , (4) A$, L! ; : GOTO 10
The systemwi || respond with:

0 $ EOF TEST 84 % ECF RBA
78 | NEXT RCD RBA 70 # REMRA

Pay special attention to the spacing on that last PUT statenent. It shows the
freedomyou' re all owed when entering a program Depending on your own

| eani ngs, the spacing may or may not make the program nore readable. Fee

free to use spacing or not as you see fit.

Now |l et's go back and read sone of the data we've witten to the file. Type
in:

GET 1,158, ,1!,1#, (4)BS$, K ;
PRINT I!; I# B$; K : GOTO 10

The systemwi || respond with:

APPENDI X A A- 46

-400 -80 ABCD 70
0 $ EOF TEST 84 % EOF RBA
78 | NEXT RCD RBA 58 # REMRA

We read the data with the proper data types for what was | ocated at the
starting file position, so the results of the PRINT are nornal. Needless to
say, if we were off by even 1 byte in our positioning the results would have
been rather different.

To show the di saster which could befall the unwary programer, lets
mal position the file and repeat the last transfer. Type in:

GET 1, 157,,1!,1#, (4)B$, K
PRINT Il; I# B$ K : GOro 10
The systemwi || respond with:

2.36125E+21 2147483648. 000008 xABC 6. 01858E- 36
0 $ EOF TEST 88 % EOF RBA
77 ! NEXT RCD RBA 57 # REMRA

Nasty, isn't it? But the systemdid just what we told it to do - because it's
an FI type file, it couldn't protect us from ourselves.

If you've gotten this far, you should have a fair idea of how to manipul ate
marked itemand fixed itemfiles. As the support for TRSDOS BASIC s field
itemfiles and print/input files has not changed in NEWDOS/ 80, excepting for
allowing field itemfiles to have a standard record | ength of other than 256,
no experiments were provided here to faniliarize you with them I|f you

haven't done so lately, go back and read chapter 8. You'll see that indeed
the support for the old TRSDCS file types has been extended. Wth the
experi ence you' ve received here, you'll be able to generate your own

experiments for those extensions. Good luck to you

A- 47 APPENDI X A

APPENDI X B

The purpose of this appendix is to give sonme exanpl es of marked item and
fixed itemfile usage and to give different explanations than were offered in
chapter 8 and Appendix A Chapter 8 contains the specifications for the I/0O
enhancenents to BASIC. This appendi x hopes to give enlightennment but is not

t he specifications; chapter 8 is!!

Thr oughout this appendix (as well as the whole manual) we shall refer to the
file types by their short names. The reader should refer now to the gl ossary
in chapter 10 for the definitions of M file, MJfile, M- file, FI file and
FF file. This appendix will also refer to other terns such as | GEL, RBA,
REVMRA, REMBA, etc. which are defined in the glossary or in chapter 8.

Most of the exanples given in this appendix deal with MJ files and FF files
since these two types will be the nmost commonly used by the progranmers.

We have tried to nmake the exanples as nmuch alike as possible or practical to
make it easier for the reader to spot the differences.

Since we are basically interested in denonstrating the use of the files (an
exception is the demonstration of the uses of CMD'O', BASIC s in-nmenory
sort), we do not provide the routines which actually use or generate the data
to be read fromor sent to the files. The progranmer is assumed to provide
these routines if he/she wishes to use these exanples in live situations.

In all these exanpl es, each nanmed variable corresponding to a file itemis
suffixed with an explicit type synmbol ($, % 1 or #) (See line 120 of Exanple
3). This is done so that the reader will know exactly what type of data is
being read fromor witten to the file. W STRONGLY recomend that in your
own | GELs that you do the sanme; otherwise it is quite possible that you can
severely damage a file by the inplied type not being as you thought you
renenmbered it. Use of explicit type synbols was required in version 1 for

| GELs used in fixed itemfile processing, but that is not so in version 2. An
exanpl e of an I GEL that does not use explicit type synmbols is to change two
lines in Exanple 7 to be:

10 CLEAR 2000: DEFSTR N, S: DEFINT A |: DEFSNG F: DEFDBL D
120 (20) NM AN, AM , DT, (15) ST, | G, FP, DP;

Remenmber, we STRONGLY recommend the suffixing of type synmbols to the variable
names in | GELs.

The operation of a GET or a PUT proceeds in two phases:

1. The file positioning phase. In this phase, the file is positioned
according to the second paraneter, the file positioning paraneter, of
the GET or PUT statement. At the end of this phase, for certain types
of positioning paraneters, the file | ocation values REMRA and REMBA are
saved for possible future use when the subsequent positioning paraneter
for that filearea is # or $ (see section 8.10).

2. The data transfer phase. In this phase, data is transferred between
the file and the variables naned in the | CEL.

B-1 APPENDI X B

Exanple 1. Wite records sequentially to a MJ file.

MJ files are intended as an alternative to print/input files. AMJ file tends
to use less disk space than a print/input file, can be updated with sone
restrictions, can be indexed into via the !rba positioning paraneter, and

does not need the ;","; character sequence to separate strings during wites
to the file.

10 CLEAR 2000
20 OPEN "O', 1, " XXX/ DAT: 1", "MJ'

30 GOSUB 10000 "build data for record

40 |F R\N% = 0 THEN CLOSE: END "end of run
50 PUT 1,,, NMs, AN% AM , DT#, ST$, | @4 FP! , DP#;

60 GOTO 30

The file is opened for sequential output of records whose individual |engths
vary dependi ng upon the size of the two strings contained in each record.

The file positioning parameter in the PUT staterment is null, indicating that
each execution of that PUT wites the next sequential record.

The programer supplies the routine at 10000 to generate the data for the
records. If no nore records are to be created, set RN% = 0. O herwi se set R\N%
not 0 and put into the 8 variables NVB, AN AM, DT#, ST$, 14 FP! and DP#
the data that is to be transmitted to the file.

The IGEL in this exanple is contained within the PUT statenent and consists
of 8 expressions (in this case, all naned variables). The variable or
expression associated with each record itemis separated fromits nei ghbor by
a conma. The IGEL is terminated by a semnicol on.

The full contents of each of the strings NMB and ST$ is sent to the file,
wi th each preceded by one or two string nmarker bytes. The second marker byte
is used for strings 128 to 255 characters in |ength.

Each of the integers AN and I1G%is represented in the file as 3 bytes, a 72H
mar ker byte followed by the 2 bytes of the binary integer value in the sane
format as used by BASIC.

Each of the single precision floating point nunbers AM and FP! is
represented in the file as 5 bytes, a 73H marker byte followed by the 4 byte
bi nary single precision floating point value in the sane format as used by
BASI C.

Each of the double precision floating point nunbers DT# and DP# is
represented in the file as 9 bytes, a 74H marker byte followed by the 8 byte
bi nary doubl e precision floating point value in the sane format as used by
BASI C.

Using the IGEL in the PUT statenent to conpute the m ni rumand nmaxi mumrecord
| engths, the minimumIlength of a record in this file will be 37 bytes (both
strings are null and including the SOR byte) and the maxi mum |l ength of a
record will be 549 bytes (both strings have 255 characters).

APPENDI X B B- 2

Exanpl e 2. Read records sequentially froma MJ file.

10 CLEAR 2000

20 CPEN "I1", 1, " XXX/ DAT: 1", "MJ'

30 IF EOF (1) THEN END

40 GET 1,,, NVB, AN% AM , DT#, ST$, | G FP! , DP#;
50 GOsUB 10000 "process the record' s data
60 GOTO 30

This exanple is the opposite of Exanple 1, using the same | GEL and naned
vari abl es. The data records of the file are successively read and processed.
The programer supplies the routine at 10000 to do what he/she wishes with

t he dat a.

The file positioning paranmeter in the GET statenent is null, neaning that
each execution of that GET reads the next sequential record in the file.'

The EOF(1) function returns a true condition when the file position of the
next record is exactly at file EOF

Exanpl e 3. Sequentially read and update the records of a MJ file.

10 CLEAR 2000
20 OPEN "R', 1, " XXX/ DAT: 1", " MJ'
30 | F EOF(1) THEN END

40 GET 1,,120 'read the next sequential record

50 GOsUB 10000 "update the record's data

60 PUT 1,#, 120 'rewite the record back to the file
70 GOTO 30

120 NV, AN% AM , DT#, ST$, | G% FP! , DP#;

The sane file created in Exanple 1 is used in this exanple. The file is
opened for both input and output operations. Records are read sequentially
fromthe file into the BASIC variables, zero or nore of those variables are
updated by the programrer supplied routine at statenment 10000. Upon return
fromthat routine, the record is witten back to the file.

The file positioning parameter in the PUT statement is the character #. For
this exanple, at the start of each execution of that PUT statenent, the file
is repositioned back to the start of the record read by the GET, causing the
PUT to update that record

Both the GET and the PUT statement use the sane | GEL which is |ocated at text
line 120. This IGEL is identical to that used in exanples 1 and 2 except that
i nstead of being contained within the GET or PUT statenent, it is contained
in a separate text line with the GET and PUT statenments containing that |ine
nunber as their third paraneter.

An error will be declared if the PUT statenent finds the new length of a
record exceeds the length originally assigned to that record during Exanple
1. This will only occur when the sumtotal of the file space used by the
record's string itenms exceeds that of what the strings originally occupied
plus any null space included in the original record (insertable using the
(lend function, see section 8.4.3.4). The nuneric val ues nay be updat ed

B-3 APPENDI X B

wi t hout concern as they always occupy the sane anount of file space. Thus, if
a string itemis to be updated in a MJ file, the string's resulting length
shoul d not be increased; it can be, but be careful

Exanple 4. Read in, sort in nenory and wite back out a MJ file.

10 CLEAR 10000: DEFINT |

15 DI M NMB(200) , ANY 200) , AM (200) , DT#(200)

17 DI M ST$(200), | G% 200) , FP! (200) , DP#(200) , | X% 200)

18 DI M | X% 200)

20 1 X=0: OPEN "I",1," XXX/ DAT: 1", "MJ'

30 | F EOF(1) THEN 80

40 | X=I X+1: IF I X > 200 THEN PRI NT "TOO MANY RECORDS': END
50 GET 1,,60: GOTO 30

60 NMB(I X), AN 1 X), AM (1 X), DT#(1 X) "IGEL 1st line
70 ST$(I1X), 1 @K1 X), FP! (1X), DP#(1 X) ; "IGEL last line
80 IF IX = 0 THEN PRI NT "EMPTY FILE": END

90 CVD'O', I X, *I X% 1), AM (1), NVB(1)

100 CLOSE: OPEN "O', 1, " XXX/ DAT: 1", " MJ'

110 IY = IX FORI1Z =1 TO1Y

120 I1X = IX%12): PUT 1,,60

130 NEXT 1Z: CLOSE: END

The MJ file XXX/ DAT:1 of 1 to 200 records is read into 8 arrays.

The records are then indirectly sorted at line 90 using BASIC s array sort
using the I X% array as the integer indirect array. The sorting criteria is
ascendi ng order, first by the AM val ues and then by the NV val ues. During
the sort, the integer I X% array is set up to contain sequentially in the
sorted order the index values into the other arrays.

It should be noted that the sort changed nothing in the record arrays AM and
NMP. The I X% array was initialized to point each successive element to
successive elenents of the AM array. As the sort proceeded, the elenents in
the I X% array were noved around to conformto the sort order

It should further be noted that though the file records span across 8 arrays,
the sort saw only the two of them (AM and NM$) that provided the sort data.

After the sort the records of the file are witten out in sorted order. Since
the same file was used to store the sorted records, the user nust be sure to
preserve a backup copy of the original file in case an error occurs during
the output of the sorted records.

Thi s exanpl e denonstrates that | GELs can contain array named variabl es and
that an I GEL may span nultiple text lines (lines 60 and 70).

APPENDI X B B-4

Exanple 5. Wite records sequentially to a FF file.

FF files are intended as an alternative to field itemfiles (TRSDOS random
files). The FIELD statenment is not used with FF files; though the user may

wi sh to use the pseudo FIELD function specified in section 8.11. LSET and
RSET are not used in FF file processing to set up the variables nmaking up the
record, though if the user has set the strings to the specified lengths via

t he pseudo FIELD function, he/she may wish to use LSET or RSET to naintain a
string variable at that length. LSET and RSET nmust never be used for nuneric
variables. For FF files, MKD$, MI$, MS$, CVD, CVI and CVS are not used.

Each string variable in the I GEL nust be prefixed with the length the string
itemw |l have in the file, and regardl ess of the nunber of characters in the
variable's string at the tine of the PUT, the corresponding string in the
file will be truncated on the right or padded on the right with spaces to
make up the required nunber of characters. During the PUT, the string
variable is NOT changed; only the file itemis.

10 CLEAR 2000
20 OPEN "O', 1, " XXX/ DAT: 1", "FF", 63

30 GOSUB 10000 "build data for record

40 |F RN% = 0 THEN CLOSE: END "all done

50 PUT 1,,, (20) NM5, AN% AM , DT#, (15) STS$, | G4 FP! , DP#;
60 GOTO 30

The file is opened for sequential output of records each 63 bytes |ong.

The file positioning paranmeter in the PUT statement is null, indicating that
each execution of that PUT wites the next sequential record.

The programer supplies the routine at 10000 to generate the data fox the
records. If no nore records are to be generated, set RN% = 0. O herw se set
RN% non-zero and load the 8 variables NV, AN% AM, DT#, ST$, 13 FP!' and
DP# with the data that is to be transnitted to the file.

The IGEL is contained within the PUT statenent and consists of 8 naned
vari abl es. The nanme vari able associated with each record item separated from
its neighbor by a comma. The ICGEL is ternminated by a senicol on.

Each of the strings NMb and ST$ is represented in the file by the nunber of
characters specified by the variable's prefix in the | GEL. For each PUT
executed by this exanple, the current contents of NMb are sent to the file.
If the NMb string has nore than 20 characters, the excess characters on the
right are dropped fromthe file item not fromNMb. If the NMb string has

| ess than 20 characters, the file item not NMb, is padded on the right with
spaces to make the file item 20 characters [ong. The same concept holds in
restricting to 15 characters the file itemassociated with the ST$ string.

Each of the integers AN and | G%is represented in the file by 2 bytes in the
sanme format as used by BASIC

Each of the single precision floating point nunbers AM and DF! is
represented in the file by 4 bytes in the sane format as used by BASIC.

B-5 APPENDI X B

Each of the double precision floating point nunbers DI# and DP# is
represented in the file by 8 bytes in the sane format as used by BASIC.

Exanple 6. Read records sequentially froma FF file.

10 CLEAR 2000

20 OPEN "1 ", 1, " XXX/ DAT: 1", "FF", 63

30 I F EOF(1) THEN END

40 GET 1,,,(20) NMB, AN AM , DT#, (15) ST$, | G4 FP! , DP#;
50 GOsSUB 10000 "process the record' s data

60 GOTO 30

This exanple is the opposite of Exanple 5, using the sanme | GEL and naned
vari abl es. The data records of the file are successively read and processed.
The programer supplies the routine at 10000 to process the data.

The file positioning paranmeter in the GET statenent is null, neaning that
each execution of that GET reads the next sequential record in the file.

After each record read, AMP contains a 20 character string and ST$ contains a
15 character string.

Exanple 7. Sequentially read and update the records of a FF file.

10 CLEAR 2000
20 OPEN "R', 1, " XXX/ DAT: 1", "FF", 63
30 | F EOF(1) THEN END

40 GET 1,,120 'read the next sequential record

50 GOsUB 10000 "update the record's data

60 PUT 1, #,120 ‘rewrite the record back to the file
70 GOTO 30

120 (20) NMB, AN% AM , DT#, (15) ST$, | G% FP! , DP#;

The sane file created in Exanple 5 is used here. The file is opened for both
i nput and output operations. Records are read sequentially fromthe file into
the BASI C variables, zero or nore of those variables are updated by the
programer supplied routine at statenent 10000. Upon return fromthat

routine, the record is witten back to the file.

The file positioning paranmeter for the PUT statenent is the character A At
the start of each execution of the PUT in this exanple, the file was
repositioned back to the start of the file record read by the GET (in nore
conplicated words, to the REMRA), thus causing the PUT to wite that record.

Both the GET and the PUT use the I GEL starting at |ine 120.

After each GET, NMp contains a 20 character string and ST$ contains a 15
character string. During the programrer supplied processing, the |engths of
one or both of the strings may change. During the PUT, the file item
corresponding to AMb is set again to a length of 20 characters, w th space
paddi ng or truncation taking place on the right as necessary. The sane

APPENDI X B B-6

concept applies to the 15 character file item corresponding to ST$. Renenber,
AMB and ST$ are not changed by the PUT

Exanple 8. Randomy read and optionally update the records of a FF file.

10 CLEAR 2000
20 OPEN "D', 1, " XXX/ DAT: 1", "FF", 63

30 GOSUB 10000 "determ ne which record to read

40 |IF RNo= 0 THEN END 'end if no nore

50 GET 1, RN% 120 '"read that record

60 GOsSUB 15000 "optionally update the record' s data

70 | F RN% <> 0 THEN PUT 1, RN% 120 "if required, wite the record
80 GOTO 30

120 (20) NMB, AN% AM , DT#, (15) ST$, | G% FP! , DP#;

This exanple is simlar to Exanple 7 excepting that the record reads are done
randonmy and the progranmer can el ect not to update the record.

The file created in Exanple 5 is used here. For each record, the processing
is as foll ows:

The programer supplied routine at |ine 10000 deternines which file
record is to be | ooked at next. On return, RN% contains the desired
record nunber; if RN = 0, the run i s ended.

The record is read, using RN%bas the file positioning paraneter to
specify which record i s wanted.

The programer supplied routine at Iine 15000 | ooks at the record's
data and optionally changes 1 or nore vari abl es associated with the
record. On exit fromthe routine, RN%is set to zero if the record is
not to be updated; otherwi se RN% i s unchanged.

If RN%is not zero, the record is rewitten to the file using R\N% as
the file positioning paraneter. Note, the file positioning paraneter
for the PUT could have been the character

Note the use of "D'" rather than "R' as the 1st paraneter in the OPEN
statenment. "R' could have been used, but "D' prevents the file from being
extended if for some reason RN% was changed before the PUT statenent to be a
record number beyond the range of the file.

Exanple 9. Sequentially wite records to a MJfile and sequentially wite
records to a FF file that serve as an index into the MJ file.

There are many cases where the user has a huge file with each record having
strings of varying | engths, does not want the string padding or truncation
that is done by field itemor fixed itemfiles and yet still wants to be able
to randomy access the file, and to a linited extent be able to update that
file. Using a MJUfile as the main file and an FF file as an index file, the
user can achi eve these objectives.

B-7 APPENDI X B

10 CLEAR 2000

20 DI M AN%{ 4000), RB! (4000) "two arrays to hold index data
30 OPEN "0, 1, " XXX/ DATA","MJ' 'open the main data file

40 RC% = 0

50 GOSUB 10000 ‘create next record's data

60 |F RN = 0 THEN 105 ‘done with main file

70 RCY%"=RC%+1: |F RC% > 4000 THEN PRI NT "FILE TOO LARGE": GOTO 105
80 RB!' (RC® = LOC(1)! 'save RBA of next record

90 PUT 1,,, NMb, AN RCY , AM , DT#, ST$, | G% FP! , DP#;

100 GOTO 50

105 CLOSE

110 IF RC% = 0 THEN PRI NT "NO DATA RECORDS": END

120 CVD'O', RC% AN%{ 1) , RB! (1) ‘sort index data

130 OPEN "O', 1,"XXX/ NDX: 1","FF",6 'open index file
140 FOR X = 1 TO RC%

150 PUT 1,,, ANH X), RB! (X); "wite index record
160 NEXT X: CLOSE: END

Thi s exanpl e could have been progranmed to wite alternately one record to
each of the two files. However, since both are on the sanme drive, the drive
armwoul d be constantly in notion and executi on would take, or at |east seem
to take, forever. Therefore, the index file's data is stored into arrays to
be witten out after the main file has been conpletely witten.

For this exanple the AN array is assunmed to hold account nunbers and for
each main data file record, the account nunber is unique.

The program proceeds as fol |l ows:

For each main data file record
The programer supplied routine at 10000 set RN% = 0 if no nore
main data file records are to be created. O herwise it sets RN%
non-zero and creates the record' s data by storing the values in
the proper variables, including the account nunber into its
array.

The RBA of where that record is to be placed in the main data
file is determined by the line 80 LOC(1)1 function and is stored
into the RBA array RBI.

The record is witten to the main data file.

The two arrays AN and RBI are directly sorted. Since this is a direct
sort, both arrays are physically arranged in the sort order, which is
i n ascendi ng order of account nunber. Note, though ascending order of
RBA is the secondary sort criteria, since the account nunbers are

uni que, the RBA val ues are never checked.

APPENDI X B B-8

The index file is created by witing the index records sequentially
fromthe arrays, which are in ascending order of account numnber.

Exactly the same results woul d have been attained had text lines 80 and 9
above been witten as:

80 PUT 1,,, NMB, AN RC%W , AM , DT#, ST$, | G FP! , DP#;
90 RB! = LOC(1)# ' RBA where the record was pl aced

Exanpl e 10. Randomly read and optionally update the records of an indexed MJ
file.

10 CLEAR 2000

20 DI M ANY% 4000) , RB! (4000)

30 RC% = 0: OPEN "I",1," XXX/ NDX: 1", "FF", 6 "open index file
50 | F EOF(1) THEN 100

60 RC% = RC% + 1

70 | F RC% > 4000 THEN PRI NT "I NDEX TOO LARGE': END

80 CET 1,,, AN RC%, RB! (RC% ; 'read index data into arrays
90 GOTO 50

100 CLOSE: |IF RC% = 0 THEN PRI NT "NO ACCOUNTS": END

110 OPEN "D', 1, " XXX/ DATA", "MJ' 'open nain data file

120 GOsSUB 10000 "determ ne which account record want ed

130 I|F R\N% = 0 THEN END "if req, end the run

140 FOR X = 1 TO RC%

150 |F RN% = AN X) THEN 170 '.search index for account #r natch
160 NEXT X: PRI NT "BAD ACCOUNT NUMBER': GOTO 120

170 GET 1,!RB!'(X), 300 "read the account record

180 I F AN% <> RN% THEN PRI NT " BAD DATA FILE": END

185 GOSUB 15000 "di splay data, receive back updates

190 IF RN% <> 0 THEN PUT 1, #, 300 "if required, re-wite record
200 GOTO 120

300 NMB, AN% AM , DT#, ST$, | G FP! , DP#;

It is assuned that you, the progranmer, have an application that is basically
data retrieval for display to the termnal operator and in sone cases, update
information is received fromthe term nal operator to alter infornmation
already in the main data file.

The two files created in Exanple 9 are used in this exanple. The index file
is opened first and its contents read into the two arrays AN% and RB!

For each record, the processing is as follows:
The programer supplied routine at 10000 queries the term nal operator
to determ ne the account nunber. On return fromthat routine RN%

contai ns the account nunber; if zero, the run is to end.

The account nunber array AN%is searched for the nmatching account
nunber. If not found, an error nessage is displayed.

The account record is read fromthe nmain data file, using the account
record's RBA value fromthe RB! array as the file positioning

B-9 APPENDI X B

paranmeter. RN%is then conpared agai nst the AN value fromthe file and
if not equal, an error nessage is displayed and the run term nated.

The programer supplied routine at 15000 di splays the account data to
the term nal operator, and, if required, accepts back the new data for
the fields being updated. If the record is not to be updated, set RN% =
0.

On return, the record is re-witten to the file if RN%is non-zero. The
PUT uses file positioning paranmeter # which repositions the file to the
start of the record (again, in other words, the # causes file
positioning to RENVRA).

Exanpl e 11. Sequentially wite different type records to a MJ file.

A progranmer's application may use different types of records. Nornmally, the
i ndi vidual record types would be stored in different files, but if a record
of one type corresponds to one or nore records of one or nore other record
types the programer may want to store all of these associated records
together in the file in order to mnimze the tine needed to access them MJ
M and FI files readily allow this mxing of record types whereas field item
MF and FF files do so only if the records are all the same |ength.

An exanple of this mxture of record types night be an insurance account

whi ch can have the account main record, one or nore records of the

i ndi vidual s covered by the account, one or nmore records of paynents and one
or nore records of clains, each of the 4 record types having different
formats.

In the exanple below, three different record types are used; the main record
and two subsidiary types. There is no correl ation between these three record
types and anything in the real world; all we are trying to do is denonstrate
how a MJ file can contain the multiple type records.

In the exanple bel ow, each set of records consists of one type 1 record and a
m xture of zero or nore type 2 and 3 records.

10 CLEAR 2000
20 OPEN "O', 1, " XXX/ DAT: 1", " MJ'

30 GOsUB 10000 ‘create type 1 record' s data

40 I|F RN% = 0 THEN CLOSE: END "all done

50 PUT 1,,,"1", NMB, AN% AM , DT#, STS$, | G4 FP! , DP#;, 'wite type 1 record
60 GOsSUB 11000 'create type 2 or 3 record's data

65 IF X$ <> "2" THEN 90

70 PUT 1,,,"2", SA$, SB$, LN$, PD! ; "if type 2 record, wite it

80 GOTO 60

90 IF X$ <> "3" THEN 30

100 PUT 1,,,"3",SJ$, DF#, | P% | A% FGE ; "if type 3 record, wite it
110 GOTO 60

The programer supplied routine at 10000 sets RN% = 0 if no nore records are
to be created. Oherwise it sets RN%% non-zero and creates the type 1 record's
data. For each set of records, there is one and only one type 1 record.

APPENDI X B B-10

The programer supplied routine at 11000 creates the type 2 or type 3
record's data, whichever cones next. On exit fromthat routine X$ contains
the record type flag or if neither "2" or "3", it indicates the end of the
series of records. The type 2 and type 3 records are interm xed on the file
followi ng the associated type 1 record. For a given type 1 record, there need
not be any type 2 or 3 records.

Each PUT statenment contains its owmn |GEL. Note, in each of these | GELs the
first entry is an expression rather than a naned variable. It could have been
a naned variable containing the record type character, but expressions were
used instead to denonstrate that the I GELs used for witing to marked item
files can contain expressions as well as naned vari abl es, hence the reason
why its called an IGEL (item group expression list) instead of an IGVL (item
group variable list).

Exanpl e 12. Sequentially read and optionally update records froma MJ file
containing multiple record types.

The file created in Exanple 11 is used here. In this exanple we will
denonstrate the partial record read feature of marked itemfiles (al so
available for fixed itemfiles). The first three, the 5th and 7th itens of
the type 1 record will be read, type 2 records will be skipped, and type 3
records will be processed entirely, including optionally being updated

10 CLEAR 2000

20 OPEN "D', 1, " XXX/ DATA", " MJ'

30 I F EOF(1) THEN END

40 GET 1,,, RTS; "read record type character

50 IF RT$ <> "1" THEN PRI NT "BAD RECORD TYPE": END

60 CET 1,*,, NMb, AN% , DT#,, 1 G% 'read selected type 1 record itens
70 I F EOF(1) THEN END

80 GET 1,,,RTS; "read next record type character

90 I F RT$="2" THEN 70 ' bypass type 2 records

100 I F RT$ <> "3" THEN 50

110 GET 1, *, 200 "read in rest of type 3 record

120 GOsUB 11000 "process type 3 record' s data

130 IF RN <> 0 THEN PUT 1,%$,200 'if required, re-wite type 3 record
140 GOTO 70

200 SJ$, DF#, | P% | A% FG ;

The GET statenents at lines 40 and 80 read only one item of the next record,
and the file is left positioned at the 2nd item of the record. Both REMRA and
REMBA point to the record' s 1st item

The CET statenents at lines 60 and 110 start where the line 40 or 80 GET |eft
off. The line 60 and 110 GETS do NOT advance to the next record before

i nputting data. However, before inputting the data REMRA is set to point to
the positioning point which is the 2nd itemof the record. Thus, if the line
130. PUT is executed, the PUT's reposition paraneter will reposition the file
to REMBA which is pointing at the record's 2nd item REMRA is not changed by
the line 60 or line 110 CET statenents.

B-11 APPENDI X B

The Iine 60 GET reads the 2nd, 3rd, 5th and 7th itens of the type 1 record
and | eaves the file positioned at the 8th item The 4th and 6th itens were
ski pped, and the next execution of the line 80 GET will skip the remai nder of
the type 1 record itens (the 8th and 9th).

The renainder of the itemin the type 2 records are skipped over by the next
execution of the line 80 CET.

The Iine 110 GET reads the rest of the type 3 record, the 2nd through 6th
itens.

The programer supplied routine at Iine 11000 does whatever processing is
needed for the type 3 record, using its data plus that extracted fromthe
type 1 record. If the type 3 record is to be updated, RN%is set non-zero;
otherwise it is set equal to O.

On return for that routine, if RN% <> 0 the type 3 record is re-witten to
the file. Note that only the 2nd through the last itens were witten back to
the file. The first itemwas not changed as the file positioning done for the
line 130 PUT was to the REMBA position which was the file position existing
during the line 110 GET inmediately after its positioning was done and before
any itens were inputted.

Remenber that in updating a MF and MJ record, once an itemis witten back to
that record, all itens following it in the record nust also be witten back
if those itens are to remmin part of the record. It is not necessary they al
be witten by the sane PUT statenment, but they nust all be witten; for each
PUT that updates only part of a MJfile record fills with null bytes all of
the record's bytes, if any, following the last itemwitten.

For record segnented files, EOF conpares the | ocation of next record agai nst
the ECF. For the type 3 record processing above, the position where the |line
130 PUT | eaves off and the position of the next record are the sane. For the
type 1 and 2 records, the GET statenents left the file positioned to the 8th
and 2nd items respectively. In these cases, EOF computes the position of the
next record and uses that value in its conpare agai nst ECF

Exanpl e 13. Sequentially wite records to a M- file (marked itemfile of
fixed length records).

A progranmer's application may require full update capability for a file that
contains strings. Since a MJ file cannot guarantee record update success when
strings are being | engthened, the programmer nust go to either field item
file, a FF file or lastly, a M- file. The relative nerits of the field item
and the FF file have already been di scussed, so we will concern oursel ves
here only with the relative nerits of the FF and MF files.

APPENDI X B B-12

The advantage of M- files is that string itens are not padded with blanks to
fill out the itemto the maximumlength allowed it. Each string itemis
witten with the nunber of characters it needs, up to but not exceeding the
maxi mum | ength allowed it. Then, at the end of the record, if unused record
space exists, the record is filled out with null bytes which during the read
of a M- file, the program never sees. Though nost of the tine paddi ng bytes
do not bother the programmer in conparing a string itemfromthe file with
anot her string, there are tines when it creates a real inconveni ence conpared
to the cost of the extra di sk space invol ved.

The di sadvantage of M- files over FF files is that M- files use nore disk
space due to the inclusion of the item marker bytes. In this exanple, the
record size is 13%greater than the corresponding FF file in Exanple 5 though
both contain the sanme data, excepting that the M- file strings are not

padded.

10 CLEAR 2000

20 OPEN "O', 1, " X- XX/ DAT: 1", "MF", 71

30 GOSUB 10000 'create data for record

40 |F RN% = 0 THEN CLOSE: END 'no nore records

45 | F LOF(1) < RN% THEN PRI NT "BAD RECORD #. GOTO 30

50 PUT 1,,, (20) NM5, AN% AM , DT#, (15) STS$, | G% FP! , DP#; "wite record
60 GOTO 30

The file is opened for sequential output of records each 71 bytes | ong.
According to the IGEL at line 50, this 71 bytes allows for itens of 21, 3, 5,
9, 16, 3, 5 and 9 bytes respectively (renenber, each itemstarts with a

mar ker byte).

The programer supplies the routine at line 10000 to set RN% = 0 if no nore
records are to be created. Oherwise it sets RN% non-zero and | oads the data
for the newrecord into the 8: variables NV, AN% AM, DT#, ST$, |14 FP
and DP#.

The representation of the itens on the disk is the sane as described in
Exanple 1 for the MJfile excepting that SOR itens are not used and that both
string itens are limted to a nmaxi num nunber of characters, 20 for NMb and 15
for ST$. If at the tine the file itemis witten, either string variable has
a length greater than the maxi numallowed for the file item then the excess
characters on the right are not transmitted to the file item

Strictly speaking, it is not a requirenent that string expressions in the

| GEL used at line 50 above be prefixed with a maxi num string | ength val ue.
The 1 GEL of Exanple 1, line 50 could have been used. However, by not
specifying a maxi mum string | ength value for any one string item full update
capability cannot be guaranteed for the record.

Note the use of the LOF function at line 45 to check if the requested record
is within the file.

B-13 APPENDI X B

Exanpl e 14. Randomly read and optionally update records of a M- file.

10 CLEAR 2000
20 OPEN "D', 1, " XXX/ DAT: 1", "M, 71

30 GOsSuUB 10000 ‘determ ne which record to read

40 I|F RN% = 0 THEN CLOSE: END ‘“end if no nore

50 GET 1,R\% 120 'read that record

60 GOSUB 15000 "optionally update the record' s data vari abl es

70 | F RN% <> 0 THEN PUT 1, #, 120 "if required, rewmite the record
80 GOTO 30

120 (20) NMB, AN% AM , DT#, (15) ST$, | G% FP! , DP#;

The file is opened for randomreading and witing. The first parameter of the
OPEN statement is "D' to prevent extension of the file.

The programer supplies the routine at line 10000 to determ ne which record
is to be processed next. On exit fromthat routine, RN% contains the record
nunber except that if RN%= 0, then the run is to end

The record is then read. The resulting length of the string NMb is 0 to 20
characters and of string ST$ is 0 to 15 characters dependi ng on what the
corresponding file itemactually had in it. Renenber, no padding with spaces
was done during the itemwite and none is done during the CET.

The programer supplies the routine at line 15000 to query the data in the
vari abl es NMB, AN% AM, DT#, ST$, 1G4 FP!' and DP#. |If the record is not to
be updated, it sets RN% = 0. O herwise, it changes some or all of those
vari abl es.

On return fromthis routine, if RN%is not zero, the record is witten back
to the file. If one or nore of the string variables have a new | ength, then
the corresponding file itemassunes that new | ength.

Exanpl e 15. Sequentially wite to a M file.

M and FI files are one long series of itens. If the programmer |ogically
groups itens into records, BASIC knows nothing of it since a record length is
not specified at OPEN, such as is done for field item M- and FF files, nor
is there a record narker, such as the SOR (start of record) byte for MJ files
and the EOL (end of line) byte for print/input files. Not knowi ng anythi ng
about the programmer's possible logical record segnmentation of M and F
files, BASIC cannot automatically advance to the next record such as was done
by the GET statenment at |line 80 in Exanple 12 where the remmi nder of a type 1
or type 2 record was bypassed.

W will use the code of Exanple 11 with one change, to generate a M file
consisting of 3 record types (renmenber, BASIC knows nothing of records in M
and FI files). Changing line 20 of Exanple 11 to:

20 OPEN "O', 1, " XXX/ DAT: 1","M "

we can generate the file used in Exanple 16 bel ow.

APPENDI X B B- 14

Exanpl e 16. Sequentially read a M file.

The file created in Exanple 15 is used here. Though the programer knows the
file contains records of 3 types, BASIC does not. Therefore, to advance to
the next record, the programnust read the previous record conpletely, though
it need not do so all in one GET statenent.

A M file cannot be updated. This is restriction is made because of the
i mpossibility of handling strings whose | engths change.

10 CLEAR 2000

20 OPEN "I", 1, " XXX/ DAT: 1","M "

30 IF EOF(1) THEN END 'exit if enpty file

40 GET 1,,, RTS; "read record type character

50 |F RT$ <> "1" THEN PRI NT "BAD RECORD TYPE': END

60 CET 1,,, NMb, AN% AM , DT#, ST$, | G4 FP! , DP#; ‘read type 1 record
70 | F EOF(1) THEN END

80 CET 1,,,RT$ "read next record type character

90 IF RT$ = "2" THEN 150
100 |F RT$ <> "3" THEN 50

110 GET 1,*,,SJ$, DF#, | P | A% FG ; ‘read type record
120 GOsSUB 11000 "process using type 1 and 3 record data
140 GOTO 70

150 GET 1,,, SA$, SB$, LN$, PD1;: GOTO 70

Remenber, though the coments in the above program di scuss records, the
| ogi cal segmenting of the file into records is known only to the programmer
and not to BASIC

Note that |ine 60 above used a null positioning paraneter where line 60 in
Exanpl e 12 used the * positioning paraneter. In Exanple 12, the * was used
because file positioning was to stay where it was and not advance to the next
record. However, since for M and FI files, BASIC knows nothing of records,
the null and the * positioning paraneters work exactly the sane which is to

| eave the file positioned where it is. Thus, in lines 40, 60, 80, 110 and 150
above, the positioning paraneters null and * coul d have been used

i nterchangeably. Since it is easier to type a null than an *, the null wll
tend to be used. Renenmber though, for MJ M and FF file processing, there is
a difference between the neaning of null and the nmeaning of *.

Exanpl e 17. Sequentially wite records to a FI file and sequentially wite
i ndex records at the end of that file to indexing into the nmain records.

The FI file is a very flexible file. It allows the programmer the capability
of the FF file while allowi ng records of different |engths. Remenber, as if
the M file, BASIC knows not hing of the programmer's segnenting of a FI file
into records. To the programmer though, the FI file can be an assortnent of
all kinds of records. This exanple and Exanple 18 will use a FI file conmposed
of 5 different logical record types: the three record types used in exanples
11, 12, 15 and 16, the index records used in the FF file in exanples 9 and
10, and another 2 byte record type unique to the current file.

B- 15 APPENDI X B

In this exanple, we will assune the record type 1's AN itemis an account
nunber and that the account number is unique for each type 1 record. The file
is first witten to contain all the records of the first 3 types. The RBA and
t he account nunber of each type 1 record is saved in two BASIC arrays. After
all the data records are witten, a 1 byte record is witten to indicate the
end of the data records. Next, the two arrays are sorted into ascendi ng
account nunber order. Index records are then witten to the file. Lastly, the
nunber of index records is witten to the file.

This exanple is a cross between Exanple 9 and Exanple 11 and nost of the
conmments there apply here, excepting that you are dealing with one FI file
instead of a MJ file and a FF file.

10 CLEAR 2000

20 DI M AN% 4000), RB! (4000) "arrays for index data

30 OPEN "O', 1, " XXX/ DAT: 1", "FI " 'open the conbined data/index file
40 RC% =0

50 RT$ = "1": GOSUB 10000 'create next type 1 record

60 |F R\N% = 0 THEN 170 ‘done with main data

70 RC%RC%1: |F RC% > 4000 THEN PRI NT "FILE TOO LARGE": GOTO 170

80 RB!' (RC®% = LOC(1)! ' RBA where type 1 record will be stored
90 PUT 1,,,(1)RTS, (20) NVB, AN RCY , AM , DT#, (15) ST$, | G4 FP! , DP#; write
type 1 rec

100 GOsSUB 15000 ‘create type 2 or 3 record
110 IF RT$ = "2" THEN 150
120 IF RT$ <> "3" THEN 50

130 PUT 1,,,(1)RTS, (40)SJ$, DF#, | P% | A% FG ; 'wite type 3 record
140 GOTO 100
150 PUT 1,,, (1) RTS$, (3) SA$, (32)SB$, (14)LN$,PD!I; "wite type 2 record
160 GOTO 100

170 IF RC% = 0 THEN PRI NT "NO DATA RECORDS': END
175 RT$="0": PUT 1,,,(1)RT$; 'flag end of main data
180 CVD'O', RC% AN%{ 1), RB! (1) 'sort index data

190 FOR X = 1 TO RC%

200 PUT 1,,, AN X), RB! (X); "wite index record
210 NEXT X
220 PUT 1,,, RC% "wite nunber of index records

230 CLOSE: END

An advantage of writing the index records in with the data records is that
only one file is used for both, thus avoiding problenms in backup and copy of
keeping a data and an index file in synchronization with each other. In
exanmples 9 and 10 we could have used only one file, storing the index again
on the back end of the MJ file.

Since the file is a fixed itemtype, all naned string variables in the | GELs
nmust be prefixed with the Iength the file itemis to have. Truncation or
paddi ng with spaces on the right takes place as the string data is noved to
the file item

As with Exanple 9, exactly the sanme results would have been attai ned had text
lines 80 and 90 above been witten as:

APPENDI X B B- 16

80 PUT 1,,, (20) NVB, AN RCY , AM , DT#, (15) ST$, | G4 FP! , DP#
90 RB!' (RC®W = LOC(1)# ' RBA where the record was pl aced

Note at line 175 a one byte end-of-main data record is witten. This
separator is needed by Exanple 18.

Exanpl e 18. Randomly read and optionally update the data records of an
i ndexed M file.

The file created in Exanple 17 is used here. The last two bytes of the file
are read to determ ne the nunber of index records (and type 1 records). The

i ndex records are then read into two arrays. Then selected data record groups
are read fromthe file and optionally the DF# and | A% itens of the type 3
records are updated back to the file.

This exanple is a cross between Exanple 10 and Exanple 12 excepting that both
the index and the data are contained within the FI file, only two itens of
the type 3 record are updated, and other differences as noted bel ow

10 CLEAR 2000

20 DI M AN%{ 4000), RB! (4000) "two arrays for index data

36 OPEN "D', 1, " XXX/ DAT: 1", "FI "

40 X! = LOC(1)% - 2 "conmpute RBA of file's last 2 bytes

50 GET 1,! X!, , RC% ‘read in count of index records records
60 GET 1,!$(X!'-6*RCY "position file to 1st index record

70 FOR X = 1 TO RC% 'read index data into the two arrays
80 CGET 1,,,AN% X), RB!I (X);

90 NEXT X

100 GOsuUB 10000 "determ ne which account to process

110 IF RN% = 0 THEN END 'run is conpl eted

120 FOR X = 1 TO RC% 'search account # array for natch

130 | F RN%%6 = AN X) THEN 150

140 NEXT X: PRI NT "BAD ACCOUNT NUMBER': GOTO 100

150 GET 1,!RB! (X),, (1) RT$, (20) NMb, AN AM , DT#, (15)$, 1 G4 (12)$; 'type 1 rec
160 IF RT$ <> "1" THEN PRI NT "BAD | NDEX": END

170 | F RN% <> AN% THEN PRI NT "BAD FI LE DATA": END

180 GET 1,,,(1)RTS; "read next record's type char

190 IF RT$ = "3" THEN 230

195 IF RT$ = "1" OR RT$ = "0" THEN 100 "test end of account
200 | F RT$ <> "2" THEN PRI NT "BAD FI LE DATA": END

210 GET 1,*,,(3)SAS$, (32)SB$, (14)LN$, PD!'; ' bypass type 2 record
220 GOTO 180

230 GET 1,,,(40)SJ$, DF#, (2)$, | A% FG ; "read type 3 record

240 GOSUB 11000 "process type 1 and 3 record data
250 |F RN% <> 0 THEN PUT 1,8%,,(40)$, DF#, (2)$, 1 A% (4)%; 'update type 3 rec
260 GOTO 180

At line 40, note the use of the LOC(1)% function to obtain the RBA of the
file EOF. This is used to conmpute the RBA of the next to the last byte in the
file as the files last 2 bytes contain the integer count of both the nunber
of index records in the file and the nunber of type 1 records in the file.
This integer value is read into RC% at |ine 50.

B-17 APPENDI X B

At line 60, using this index record count, the RBA of the 1st index record is
conputed and the file positioned to the start of the first index record. Note
that the conputation is done right in the GET statenent's file positioning
paranmeter. This may be done provided the conmputation itself does not
reference a filearea. Also note that the file positioning paraneter is of the
I'$rba type (see section 8.8.6), neaning that this GET is for file positioning
only; an IGEL or IGELSN is not allowed, and no data transfer takes place.

The programer supplied routine at |ine 10000 deternines the account nunber
for the group of records to be interrogated. If no nore accounts are to be
read, set RN% = 0; otherwi se set RN% = to the account nunber.

At line 150 the file is positioned using the RBA associated with the account
nunber in the index arrays. The type 1 record is then read. It has been
arbitrarily decided that it is not necessary to know what is in the file
itens corresponding to ST$, FP! and DP# (see line 90 in Exanple 17).
Therefore, these itens can be bypassed. However, since this is fixed item
file, it is necessary to informBASIC of the number of files bytes of be

ski pped, using the (len)$ format (see section 8.4.3.3). The (15)$ causes the
skip of the 15 file bytes that would normally be read into the string ST$.
The (12)$ causes the skip of the 4 bytes that would normally be read into FP
and the 8 bytes that would nornmally be read into DP#. Lastly, if this |ICGEL
was used in FF file processing, the (12)$ expression coul d have been dropped
fromthe I GEL, as no other expressions followit in the IGEL and the next GET
with null positioning paraneter will advance the file to the next record. In
FI processing, the programmer nust account for all of the record s space
since BASIC knows not hing of his/her record structure, hence the (12)$ is
required.

At line 210, though all we want to do is skip the type 2 record, we stil
nmust advance the file positioning as once again, BASIC knows not where this
record ends. The sane file position advancenent could have been obtai ned
with:

120 GeT 1,,,(53)$; ' bypass rest of type 2 record

The programer supplied routine at 11000 processes the data fromthe type 1
and 3 records. If the type 3 record is not to be updated, set RN% = O.
O herwi se change either or both of DF# and | A% and set RN% non-zero.

The PUT statement at |line 250 repositions the file to the REMBA position
renmenbered by the GET at |line 230. The type 3 record is then updated. Note
that only 2 of the itens, those corresponding to DF# and | AA, are replaced in
the file (conmpare with line 130 of Exanple 12). The other itens are skipped
over and are not changed. In using the (len)$ or (lend expressions in the

| GEL, the progranmer nust be certain to account for the proper nunber of

byt es.

The use of the (len)$ type expression in the | GELs of lines 150 and 250 was
done only to give exanples of the (len)$ use. The user nmight prefer to just
use the regular | GELs, changing those two |ines to be:

150 GET 1,*,, (1) RT$, (20) NVB, AN% AM , DT#, (15) ST$, | G% FP! , DP#;

and
250 IF RN% <> 0 THEN PUT 1, $,,(40)SJ$, DF#, | P% | A% FG ;

APPENDI X B B-18

APPENDI X C

NEWDOS/ 80 VERSION 2.5 --- THE NEWDOS/ 80 VERSI ON 2 HARD DI SK SYSTEM
Section 1: Overview
Section 2: Comments and Restrictions
Section 3: Changes to PDRIVE
Section 4: Formatting your hard disk
Section 5: Mywving NEWDOS/ 80 to the hard disk.
Section 6: Defining PDRIVE slots froma volume definition file
Section 7: Backing up hard disk to diskettes

The NEWDOS/ 80 Version 2 nodified for hard disk operations is called both the
NEWDOS/ 80 Version 2 Hard Di sk Qperating System and NEWDOS/ 80 Version 2.5. The
di fference between the regular NEWDOS/ 80 Version 2 and Version 2.5 is the
inclusion in 2.5, via patches, of code to handl e the hard disk. This

docunent ati on for NEWDOS/ 80 Version 2.5 is considered as Appendix C to the
regul ar NEWDOS/ 80 Version 2 nmanual and should be inserted into that manual
after Appendi x B.

NEWDOS/ 80 Version 2.5 is NOT offered as a stand al one DCS; the regul ar
NEWDOS/ 80 Version 2 nmust be PURCHASED and REQ STERED either prior to or at
the tine of purchase of NEWDQOS/ 80 Version 2.5.

As usual w th NEWDOS/ 80, the user should study this docunent carefully before
attenpting to do anything with the NEWDOS/ 80 Version 2.5 Hard Di sk Operating
System

The basi ¢ NEWDOS/ 80 Version 2.5 supports Apparat's and Tandy's hard di sks for
either the TRS-80 Model | or II1. Special Version 2.5 system di skettes may
| ater be made available for other types of hard disks.

You may have al ready been using your hard di sk under LDOS or another DOS and
have val ued user files on the lard disk. If this is so, you are already a
serious hard disk user and cannot afford to | ose valued data just because you
are switching DOSs. You Faust:

CAREFULLY pl an your nove.

Backup up those files fromhard disk to diskette using that DOS s of fl oad
program This is insurance in case the conversion to NEWDOS/ 80 fails; you can
reformat the hard disk(s) for the other DOS and rel oad the files.

Move NEWDQOS/ 80 Version 2.5's HDBACKUP/ CND program over to that DOS (see the
NND par anet er di scussion in section 7).

Use HDBACKUP under that DOS to again offload your files to another set of
di skettes. Renmenber to use the SAVE, | NCLUDE and NND paraneters. Also
renmenmber, for 5 million bytes of data, the HDBACKUP SAVE function wll need
27 pre-formatted single sided, double density 40 track (720 sector)

di skettes.

Initialize the hard disks for NEWDOS/ 80 Version 2.5 usi ng HDFMIAPP, PDRI VE
and FORMNAT.

C1 APPENDI X C

Use HDBACKUP under NEWDOS/ 80 Version 2.5 to RESTORE the files from di skettes
to the hard disks. Carefully plan this nmove; you may decide to use nore than
one RESTORE fromthe same backup to get the various files where you want

t hem

1. OVERVI EW
1. Adata file may contain as many as 16 mllion bytes.

2. A hard disk data volume can be up to 65535 sectors and contain up to
246 user files.

3. PDRIVE allows a maxi nrum of eight active slots with a maxi mum of 4
floppy data vol unes or eight hard disk volunes active at one tine.

4. The capacity to support hard disk drives of over 100 nillion bytes
exi sts, though currently only the Apparat and Tandy hard di sk drives
are support ed.

5. A hard disk drive is divided into one or nore drive sections.

6. A hard disk section is divided into one or nore data volunmes. The
data volune is what is defined by PDRIVE. A data volune nay not span
mul tiple hard disk drives or drive sections.

7. 48K of RAN is required. The hard di sk nodifications for NEWQOS/ 80
Version 2.5 have preenpted conputer nmain nmenory OF900H - OFFFFH
Prograns that execute in that area nust no | onger be used.

8. Aside fromthe main nmenory limtation above, nost prograns that work
with NEWDOS/ 80 Version 2 will work with NEWDOS/ 80 Version 2.5. However

i f any program assunmes certain volume sizes (i.e. 350 sectors on the
Model | or 720 sectors on the Model I11) or a certain |location and size
of the directory, that programw || have to be nodified. Basically,
prograns that use standard file I/O and observe H MEM shoul d be K

9. The hard di sk system can operate either fromfloppy drive 0 (in

whi ch case floppies retain their old drive nunbers) or fromthe hard

di sk (in which case, floppy drives 0 - 3 becone drives 4 - 7
respectively). Section 5 steps the user through the shift of the system
froma floppy to a hard di sk vol une.

10. Pr ogr am HDFMTAPP/ CVMD i s used to magnetically format Apparat and
Tandy hard di sks.

11. Pr ogr am HDBACKUP/ CVMD i s used to selectively save hard disk files
of any size onto floppies or to selectively restore themto hard disk
This is NEWDOS/ 80 Version 2.5's hard di sk backup facility and nust be
used to make backup copies of valued data files. Further, the program
HDBACKUP/ CVMD can be transferred to another DOS (see NND paraneter in
section 7) so that the program can be used under that DOS to offload
user files to diskette preparatory to changing the hard disk to operate
under NEWDOS/ 80 Version 2.5 on to onload user files fromdiskette to
hard di sk should the user wish to take the hard di sk back to the other
DCS.

APPENDI X C G2

12. Pr ogr am EXTPDRI V/ BAS can be used to set PDRIVE slot definitions
fromdefinitions stored in an ASCI| text file. Since hard disk data
vol unme specifications are both difficult and critical, it is
recomended they be pernanently built in a text file via SCRIPSIT or
CHAI NBLD and then activated when needed via EXTPDRI V.

13. Par anmet er HDS has been added to DOS command PDRI VE to define hard
di sk vol unes.

14. Hard di sk vol umes defined under Model 111 NEWDOS/ 80 can be used
under Model | NEWDCOS/ 80 and vice versa. The files on these vol unes are
NOT useabl e i nterchangeably if they were NOT useabl e interchangeably
when those files were on di skettes.

2. COWENTS and RESTRI CTI ONS

1. The user must be know edgeabl e of NEWOS/ 80 Version 2 and al
subsequent information issued via the zaps prior to attenpting to use
the Hard Di sk system All hard disk discussion herein assunes this
know edge. This docunent is intended only as supplenmentary information
to the regul ar NEWDOS/ 80 Version 2 nanual and its subsequent zaps.

2. This docunent does NOT provide information about your hard disk.

That information nmust be obtained fromthe source where you purchased
or otherw se obtained your hard disk. The informati on NEWDOS/ 80 needs
to know about your hard disk drive is (1) the nunber of recording
surfaces (or nunmber of 1/0 heads), (2) the nunber of tracks per surface
(or the nunber of cylinders), (3) the nunber of 256 bytes sectors
actually fornatted on each track, and (4) track-to-track stepping rate
code.

3. NEWDOS/ 80 Version 2 was not designed to operate with hard disks. Al
of the changes creating Version 2.5 have been done by patching the
standard Version 2, with the exception that SYSO SYS has been extended
five sectors. This patching to Version 2 provides a mni num hard di sk
operating system and each specially purchased hard di sk system di skette
will operate with one and only one type of hard disk drive. If another
type of hard disk drive has exactly the sane interface to the conputer,
then it can also work with a particular hard di sk system di skette
(exanpl e, both Tandy's and Apparat's hard di sks for the Mdel | and
Model 3 have the sane software interface, therefore either (but not
both at the sane tine) can be used with the same Version 2.5 Hard Di sk
system di skette). The standard i ssue NEWDOS/ 80 Version 2.5 hard disk
system supports Apparat's and Tandy's hard di sks for either the TRS-80
Model | or I11.

4. This system REQU RES 48K of RAM To inplenment hard di sk code, main

menory from F900OH to FFFFH has been taken by DOS and is not avail able

to the users. Any user prograns that use this area MJST either no

| onger be used or be nodified to no | onger use the FO0OH to FFFFH mai n
menory area. HMEMis set to OF8FFH by DOS automatically and prograns

t hat observe H MEM should be all right.

5. The nunber of active PDRIVE slots (fornerly called drives) has been
expanded from4 to 8, allow ng a maxi mum of 4 floppy vol unes, 8 hard
di sk volunes or a conbination thereof. The nunber of actual active

C3 APPENDI X C

PDRI VE slots is still controlled by SYSTEM option AL. If a ?DRIVE
active slot is to be unused, defining it as a hard di sk volunme and
setting the PDRI VE HDS sub-paraneter vscl to O will cause PDRIVE to
accept the definition in an active slot and NEWDOS/ 80 to treat the sl ot
as DEVI CE NOT AVAI LABLE whenever it attenpts to use that slot (drive).

6. Two floppy drives are desirable, though only one is required. The
Version 2.5 Hard Di sk System conmes on a standard 40 track, double
density diskette on the Mdel Il and a standard 35 track, single
density diskette on the Mddel |I. Since the capacity of the Mdel |

di skette is too snall to contain all the files for the hard di sk system
as cell as those of the nor.-hard disk system sone of the files (or
program nodul es) of the regular NEWDOS/ 80 are not present on the hard

di sk system di skette. \When needed, you may copy these nodul es over from
t he regul ar NEWDOS/ 80 system di skette.

7. The user nay elect to run using a floppy systemdi skette (a copy of
the Version 2.5 Hard Di sk System di skette) or he/she ray nove the
NEWDOS/ 80 Version 2.5 Hard Disk Systemonto a hard di sk vol une.

1. If the systemis being run fromfloppy drive 0 (the normal
drive 0 for the conputer), the floppy drives 0 - 3 use PDRI VE
slots O through 3 respectively, just as they do in the regular
NEWDOS/ 80 Version 2. Under the floppy hard di sk system PDRIVE
slots 1 - 7 may be defined as hard di sk vol umes and accessed by
user progranms as drives 1 - 7 respectively.

2. If the systemis being run fromhard disk, the floppy drives 0
-3 use PDRIVE slots 4 through 7 respectively, and the floppy
drives 0 - 3 are known to the system and user prograns as drives
(or slots) 4 through 7 (though you may use any or all of drives
(or slots) O through 7 for hard disk vol unes).

***x* \WArni ng, when the systemis being run fromthe hard
di sk, access to the floppy drives is slots 4 - 7 meani ng
that all slots between the systemvolume in slot 0 and the
sl ot being used by the floppy drive MJST be valid
definitions even though you are using only one hard di sk
volunme. PDRIVE will allow and DOS will ignore a slot
defined for a null hard disk volune (having the HDS sub-
paranmeter vscl equal 0), thus allow ng access to the floppy
drives.

8. The DOS command FORMAT or the format portion of COPY do NOT actually
format the hard disk; instead of formatting, the nessage, | N TlIALIZI NG
SECTORS, is displayed and the sectors are witten with a standard
pattern. To actually format the Apparat or Tandy hard di sk, use the
HDFMTAPP/ CAD pr ogram provi ded. To fornmat another hard di sk, you mnust
use a program provided by the hard disk retailer (NOT provided by
Apparat).

APPENDI X C C4

9. This hard di sk upgrade does NOT support the standard LDOS TRS- 80
hard di sk data vol unmes as directory concepts slightly differ, though

t hose vol umes can be read via SUPERZAP by expert users (provided the
hard disk is divided into sections properly, spgl value is 16, the
ddsl 1 value is 76, the ddsal value is 32, and the gpll value is 2 for
one surface volunmes, 4 for two surfaces, 6 for three surfaces and 8 for
four surfaces)(changing H T sector rel byte 1FH from OOH to 16H al | ows
DIR to work and nmany other functions nmarginally)(you are on your own
processi ng LDOS vol unes under NEWDCS; don't call Apparat when you get
into trouble). Basically, when shifting fromone DOS to another, the
user nust off-load the hard disk files to floppies under that DOS using
t he NEWDOS/ 80' s HDBACKUP program and bring them back in under the other
DOS usi ng NEWDOS/ 80' s HDBACKUP program (t he NND paraneter nust be used
when the DOS is other than NEWDOS/ 80).

10. A nunber of user prograns read and interpret the directory. If
that programwas reading the directory as the DIR/ SYS file, observing
the protected sector error code and observing EOF, there should be no
problem |If the programwas using the DDSL value in the data vol une 1st
sector to conpute the directory location, the programw |l fail unless
the data volume has spgl = 5. If the programwas assuning the |ocation
and size of the directory, it will nopst probably fail!!

11. A data vol une must not exceed 65535 sectors. Aside fromthe space
used by BOOT/ SYS and DI R/ SYS on that data volune, all the remaining
space may be allocated to one file, over 16 million bytes. The sector
range assigned to one data vol une nmust NOT overlap that of any other
data volune; it is the user's responsibility, through careful PDRIVE
definition of the data volumes, to avid this overlap, which can be

qui te disastrous.

12. A hard disk drive is logically divided into one or nore data
vol unmes via judicious use of the PDRIVE HDS paraneter. Though a data
volume is limted to a maxi mum of 65535 sectors, a hard disk drive is
[imted ONLY by its actual capacity AND the limtations that Sectors
Per Track (SPT or spgl) nust be Il ess than 256, Tracks Per Cylinder
(TPC) (or RSC (Recording Surface Count)) must be |less than 256, Tracks
Per Surface UPS or tpsl) nust be |less than 65536, and TPS tines TPC
nmust be | ess than 65536.

13. A hard disk physical drive's space may be divided into drive
sections. Normal NEWOS/ 80 Version 2.5 operations DO NOT require this.
However, if your division of the hard disk is to be such that part of
the hard disk is to be used for data vol unes of another DOS (such as
LDOS) which assigns data volunes in units of one or nore entire
recording surfaces, it is necessary to sectionalize your hard disk
under NEWDOS/ 80. This is done by setting the PDRI VE HDS sub- par anet er
sscl value to the nunber of recording surfaces assigned to that drive
section and by setting, the sfsl value to the relative nunber of the
first recording surface assigned to that drive section. For a given
drive, no two sections may share the sanme recording surface, and no
data vol une nay have space assigned from nore than one drive section

14. For DOS comand COPY, the =tcl paraneter is not legal if the

SOURCE is a hard di sk data volune. For FORMAT and COPY, the =tc2, DDSL
and DDGA paraneters are not legal if the DESTINATION is a hard disk

G5 APPENDI X C

data volune. For FREE and the header of DIR, to avoid anbiguity, a
track count of O is displayed if the data volunme is on a hard disk.

15. The SUPERZAP di spl ays may | ook awkward as they were not designed
to handl e over 9999 sectors. However, they do work, excepting that TRK
and SOT val ues are not displayed for sectors on hard disk. The DTS nain
nmenu function is not allowed for hard di sk vol unes.

16. Format 5 COPY (full diskette COPY) requires that SOURCE and

DESTI NATI ON have the sane GPL and SPG val ues and, if the destination is
on a hard di sk, the sane ddsl 1 and ddsal value. O herwi se fornmat 6 COPY
(Copy By File) nust be used.

17. Har d di sk vol unes defined under Mbddel 111 NEWOS/ 80 can be used
under Model | NEWDGOS/ 80 and vice versa if NEWOS/ 80 supports the drive
for the Mbdel | and Ill. The files on these volunes are NOT useabl e

i nterchangeably if they were NOT useabl e interchangeably when those
files were on diskettes (such as system program and nost user
non-BASI C program files). If you intend to use a hard disk with both

your Mbdel | and your Model [11 (though not at the same tine) and
intend to run the systemfromthat hard disk, you should create two
system vol umes on the hard disk, one for the Mbdel | and one for the
Model |11,

18. ***x%% Frrors nay occur in DI RCHECK and SUPERZAP if DFG

(M N -DOS) or 123 (DEBUG) are used during the progranm s execution and
the target drive is not explicitly re-specified after concl usion of

M NI - DOS or DEBUG After M N -DOS or DEBUG i n SUPERZAP, it is
recomended that you return to the main nmenu or do the 'J' display
function; for DI RCHECK, respond Y or N to the nenu.

3. CHANGES TO PDRI VE for hard di sk operation.

No exi sting paraneters in PDRIVE have been changed (so fl oppies are defined
exactly as before), and one paraneter, the HDS paraneter, has been added to
accommodat e the hard di sks.

The TRS-80 diskette directory was originally intended for 35 or 40 track

di skettes of 350 to 400 sectors. In NEWDOS/ 80 Versions 1 and 2, the directory
was nodi fied somewhat to all ow for a nmaxi mum of 222 user files instead of 62
and all ow a naxi mum of 1536 granules instead of 192. To get these extra
granul es, the granule |ockout table was elinmnated fromthe GAT sector and
nunber of granules per lunmp (GPL) was expanded fromthe old inplied val ue of
2 to a user specified value with a maxi mum value of 8. At 5 sectors per
granule, this allowed for 7680 sectors (1,966,080 bytes) per data vol une.

However, with hard disks, we really want the capability of allow ng a vol une
to be up to 65535 sectors and a file to be not much less than that. |In order
to retain the sane directory structure but increase the nunber of sectors for
a data volume, we have changed the number of Sectors Per Ganule fromthe old
inmplied value of 5 to a user specified value of not nore than 255.
Theoretically, this should allow for 1536 * 255 = 391, 680 sectors, but there
i s another governing restraint, that of the NEXT and EOF fields of the
directory FPDE and the file's FCB. These fields allow for a nmaxi num of 65535
sectors (if wap around is to be avoided). Normally this restriction limts
the size of a file, but actually this restriction limts a data volune's size

APPENDI X C C6

since NEWDOS/ 80 has a special use of the FCB that allows sector I/Odirectly
to a data vol une, bypassing the file concept altogether. Therefore, the
NEWDOS/ 80 version 2.5 hard disk systemlimts a data volune to 65535 sectors
(16, 776, 960 bytes). Since each volune has a BOOT/SYS file and a DIR/ SYS file,
the maxi mum size of a user file is sonewhat | ess than 65535 sectors.

Though 5, 10 or 15 nillion byte hard di sk can be treated by NEWQOS/ 80 as one
data volune, it is generally desirable to divide a hard disk into nore than
one data volume. NEWDOS/ 80 allows the user great flexibility in this,
admttedly at a cost of conplexity (as usual wi th NEWDOS/ 80's PDRI VE which
many users are still unconfortable with). A PDRIVE slot definition actually
specifies a data volune, not a floppy drive or a hard disk drive or a hard
di sk drive section. The specifications for the drive and, optionally, drive
section are sinply part of the specifications of a data vol une.

The definition of hard disk data volunes is nore difficult and nore critica
than for floppy diskette data volunmes. The user is solely responsible of
assuring that a hard disk sector is NOT shared by two or nore data vol unes.
As an aid to the user, the BASIC program EXTPDRI V/ BAS has been provided to
search an ASCII text file for a specified definition and assign the
definition to a specified PDRIVE slot. Using SCRIPSIT or CHAI NBLD, the user
can carefully and pernmanently build his/her hard di sk data vol une definitions
(actually just the HDS paraneters), and |later, when a particular data vol une
is needed in a particular PDRIVE slot, EXTPDRIV can be used to effect this
assi gnment .

Further, NEWDOS/ 30 Version 2.5 does NOT nmintain a table of bad hard di sk
sectors. If your hard di sk has bad sectors, you nust either operate that
drive with a sufficiently reduced SPT (sectors per track) value or you mnust
define data volumes such that the bad sectors at not included within any data
vol une.

Since a hard disk data volune's definition has nore values than for a floppy
data volunme, and we want to linmt each slot's definition to one line on the
di spl ay, we have decided to conbine all 12 values of a hard disk data vol une
specification into one paraneter, the SIDS (Hard Di sk Specification)
parameter. The 12 values are called sub-paraneters; ALL 12 MJST be gi ven EACH
time the HDS paranmeter is used, and all nust be in the exact order specified.
The specification of the LIDS paraneter is:

HDS=(hddn1,t ps1, sfsl, sscl,sptl,tsrl,vfsl, vscl, spgl, gpl 1, ddsl 1, ddsal)
wher e:

1. hddnl neans Hard Di sk Drive Nunber and is the relative nunmber (0
3) of the drive on the hard disk cable with 0 being the first drive.
hddnl specifies which physical hard disk drive the data volune is on

2. tpsl means Tracks Per Surface and is the nunmber of tracks per
recordi ng surface (al so the number of cylinders) for the hard disk
drive. Each recording surface of the drive has tpsl nunber of tracks.
tpsl is an integer fromO to 65536. For Apparat hard di sks, tpsl = 306.
For Tandy 5 Meg hard disks, tpsl = 153.

LDOS 5.1.3 appears unable to support the tpsl value of 306 used with
Apparat's hard di sk. However, an Apparat 10 Meg hard disk (with tpsl =

C7 APPENDI X C

306 and RSC = 4) can be used as a 5 Meg hard disk with LDOS 5.1.3 where
i mplied values of tpsl = 153 and RSC = 4 are used.

3. sfsl nmeans Section First Surface and is the relative nunber of
the first surface of the hard disk drive assigned to the drive section
containing the data volunme. sfsl is an integer between 0 and RSC-1. |f
you are not sectioning your hard disks, sfsl will always be O.

RSC nmeans Recordi ng Surface Count and is the nunber of recording
surfaces for the hard disk. Another termfor the nunber of recording
surfaces is TPC (Tracks Per Cylinder). For Apparat 5, 10 and 15 Meg
hard disks, CSCis 2, 4 and 6 respectively. For Tandy 5 Meg hard di sks,
RSC is 4.

4. sscl nmeans Section Surface Count and is the nunber of
consecutive surfaces of the hard disk drive assigned to the drive
section containing the data volune. sscl is an integer between 1 and
RSC with the sumof sfsl and sscl not greater than RSC. |If you are not
sectioning your hard disks, sscl will always equal RSC.

5. sptl nmeans Sectors Per Track and is the nunmber of 256 byte
sectors on each track of the hard- disk drive which in turn is the
nunber of sectors formatted on each track by the fornat program
supplied with your hard disk for Apparat and Tandy hard disks, this is
t he HDFMTAPP progran). sptl is an integer from1 to 255. Normally,
Apparat and Tandy hard di sk drives have 32 sectors per track; however,
i f during HDFMTAPP formatting of the hard disk, a track is found with
nore than one error sector, it will be necessary to format the hard
disk with less titan 32 sectors per track unless you intend to define
data vol unes to bypass the bad sectors; remenber, NEWDOS/ 80 does NOT
mai ntain a hard di sk bad sector table.

6. tsrl means Track Stepping Rate and is a code used by DOS to send
track-to-track stepping rate information to the hard di sk controller

W zen it is necessary to nove the di sk armwhich contains the

read/ wite heads. tsrl is an integer between 0 and 255. Apparat hard

di sk use tsrl = 0. Tandy 5 Meg hard disks require tsrl = 6.

7. vfsl neans Vol ume First Sector and is the relative sector nunber
within the drive section of the data volune's first sector (the data
volunme's relative sector 0). vfsl is an integer between 0 and

16, 777,215 with an effective upper limt of one |less than the nunmber of
sectors assigned to the drive section (if a hard disk is not sectioned,
the hard disk is one in the sane as its one section). If vfsl = 0, then
the data volunme's sector range starts with the first sector of the
drive section; further, if both vfsl and sfsl are 0, the data volune's
range starts with the drive's 1st sector

8. vscl means Vol une Sector Count and is the nunber of consecutive
sectors of the drive section, beginning with sector vfsl, assigned to
this data volune. vscl is an integer between 0 and 65535 but the sum of
vfsl and vscl nust not exceed the nunber of sectors assigned to the
drive section (which is tpsl * sscl * sptl). If vscl is sinply the
asteri sk character instead of an integer, PDRIVE will assign all of the
drive section's remaining sectors to the data vol une.

APPENDI X C C8

*rxxkkxkxxx | MPORTANT. PDRIVE will accept a vscl value of 0, neaning a
null data volunme, and it will allow the data volune definition into an
active slot (provided the definition has no other errors). If vscl is
0, DOS will generate a DEVI CE NOT AVAI LABLE error whenever a slot is
selected that contains this data volunme. This is needed as a way of
filling in PDRIVE slot definitions so that access can be nade to slots
4 - 7 for floppy diskette operations when running the system from hard
di sk and not all of slots 1 to 3 are defined for valid hard di sk data
vol unes.

The sub-paranmeters hddnl, tpsl, sfsl, sscl, sptl, vfsl and vscl conbi ne
to define a unique range of hard di sk sectors assigned to the data
volunme. No sector in this range may be shared by another data vol une
defined by PDRIVE; it is the user's responsibility to avoid this
conflict. Otherw se, the sane sector can end up being used for two

di fferent purposes.

9. spgl nmeans Sectors Per Granule and is the nunber of sectors in
each allocation granule for this data volunme. spgl is an integer
between 1 and 255. If spgl = 0 is specified, PDRIVE will conpute the

| owest spgl above 4 that will suffice for the gpll value specified and
t he nunber of sectors assigned to the data volunme (vscl).

When DOS assigns disk space to a file, it does so in mnimmunits
call ed granules; so the spgl val ue defines the m ni num nunber of
sectors allocated to a file and also is one nore than the maxi mum
nunber of sectors that a file will have all ocated beyond its needs.
Cenerally, it is desirable to have a small spgl value, but the snaller
the spgl value, the smaller the nmaxi mum size a data volunme may be. In
t he regul ar NEWDOS/ 80 Version 2, a SPG value of 5 was inplied and

al ways used, except in sone of the COPYs to and from special TRSDCOS

di skettes. If full diskette COPY (not CBF) conpatibility is wanted with
the floppies, spgl = 5 nmust be used as that is the standard in the
NEWDOS/ 80 Version 2 floppy world.

**xxx %% \WArni ng, when a NEWDOS/ 80 system vol unme i s bei ng COPY' ed using
CBF and the destination spgl value is |ess than the source spgl val ue,
DI SKETTE GAT OVERFLOW error may occur. The only alternative is to copy
the systemfromthe hard di sk system di skette and use a destination
spgl greater than 4.

10. gpl 2 means Granul es Per Lunp and is the maxi mum nunber of

al l ocation granules for each byte in the data volunme directory's
Granul e Allocation Table in the GAT sector (the first sector of the
directory). gpll is an integer between 2 and 8. GPL = 2 is the standard
for the old Mddel | TRSDOS 2.3, and the NEWOS/ 80 Version 2 master

di skettes use GPL = 2. However, any data volunme, whether hard di sk or
floppy, with nmore than 1920 sectors, should use a |arger GPL under the
criteria that it is better to increase the GPL that the SPG It is
recomended that if GPL = 2 is not used, then use GPL = 8. Though the
other values are legal, don't use themunless you are attenpting
conpatibility with another DCS.

A 1 unmp???? For NEWDOS/ 80 Version 2, we wanted to elimnate the
one-to-one correspondence between a byte in the GAT table and a

di skette (or hard disk) track or cylinder so that granules could flow
across track and cylinder boundaries. A granule's allocation state is

C9 APPENDI X C

handl ed by one bit in the GAT, and we wanted to use all eight bits in
each GAT byte to extend the nunber of granules the GAT coul d account
for. However, the old TRSDOS 2.3 standard was to use only the right two
bits of each GAT byte; so we couldn't arbitrarily force all directories
to start using all 8 bits. Yet, we wanted to allow use of all 8 bits;
so we had to cone up with a nane for a byte in the GAT as distinct from
anyt hi ng el se. Under the assunption that if a nunber of sectors is a
granul e, then a nunmber of granules could be called a |unmp, we defined a
lunp to be sinply a byte in the Granule Allocation Table in the data
volunme directory's first sector, and that's all it is.

11. ddsl1 neans Default Directory Starting Lunp and neans the

rel ative nunmber of the |unp whose 1st sector is the beginning of the
data volune's directory. ddsl1 is an integer between 1 and 191, though
no guarantee is given that a particular value will work. The standard
ddsl 1 value in the 35/40 track single sided, single density diskette
world was and is 17, and your naster NEWDOS/ 80 system di skette uses
that value. If ddsll = 0 is specified, NEWDOS/ 80 will conmpute a ddsl1
val ue somewhere near the middle of the data vol une, but not greater
than 80, as it is assuned nore data will exist near the begi nning of
the volume than at the end.

Al Mdel | and Model 111 DOSS put the directory somewhere in the

m ddl e of the data volune. Since NEWDOS/ 80 runs with a variety of

di skette and hard di sk capacities, NEWQOS/ 80 allows the user to specify
where the directory is to be put. The ddsl 1l value is this

speci fication. NEWDOS/ 80 stores the ddsl1 value in 3rd byte of the
first sector of BOOT/SYS (also the first sector of the data vol une)
during data volunme format (either FORMAT or COPY) so that DOS (and
clever users) can find the directory. NEWDOS/ 80 senses it has |l ost the
directory location when it reads a directory sector that is not
protected. It then goes to the 3rd byte of the volunme's 1st sector for
the ddsl 1 value and conputes the directory location. The standard DDSL
value for the 35 and 40 track single density diskettes was 17, but as
di skettes have increased in capacity and hard di sks have appeared,
starting the directory at lunp 17 placed it too close to the start of
the data volunme. For dual sided 80 track, double density diskettes with
GPL=8, it was commpn to put the directory at lunp 35.

In the diskette world, DDSL has neani ng only when a diskette is
formatted as NEWDOS/ 80, at all other times, can find the directory when
it wants to. However, in the hard disk world, since we can't wite
directory sectors with address marks different fromthe other sectors,
NEWDOS/ 80 cannot tell when it should go to the volunme's first sector
get the ddsl 1l value, and re-conpute the location of the directory.
Therefore, the ddsl1l value is used by NEWDOS/ 80 at all. tines to know
where a hard di sk volune directory is. If you change the ddsl 1 val ue at
atine other then just before the hard disk volune is formatted,
NEWDOS/ 80, without realizing it, will process non-directory data as
directory data.

12. ddsal neans Default Directory Sector Allocation and specifies the
nunber of sectors to be used for the directory. ddsal is an integer
from10 to 33. This ddsal value is different than the DDGA val ue used
by PDRIVE for floppy diskette definitions. Do not confuse the two. The
change from DDGA to DDSA was necessitated by the fact that SPG for the
hard disks is no longer a standard 5 sectors per granule. A ddsal val ue

APPENDI X C C 10

of 10, 15, 20, 25 and 30 is conpatible with older configurations that
used DDGA=2, 3, 4, 5 or 6 respectively. A ddsal value of 33 allows a
data volune to have a nmaxi num of 246 user files. Unless a hard disk
data volune is to be snall or conpatibility with diskettes is to be
mai ntained, it is recomended that ddsal = 33 be used.

The ddsal value for hard disk is nmore inmportant than the DDGA val ue is
for floppies. The DDGA value is used only at diskette format tine. The
ddsal value, along with the ddsl1 value, is the only way the DOS sector
I/Oroutines know if a sector is part of the hard di sk data vol une
directory or not; therefore, if the ddsal value is to be chanted, it
nmust be changed only before a hard disk data volune is formatted. The
ddsl 1 and ddsal values are the ONLY way the NEWDOS/ 80 sector I/O

routi nes know that a given hard disk sector is a directory sector

EXAMPLES:

***x** Renmenber, when parameter HDS is specified, all 12 sub-paraneters
nmust be supplied in the correct order

1. PDRIVE, 0, 1, HDS=(0, 306, 0, 2, 32, 0, 0, 2880, 5, 8, 35, 33)

specifies a 2880 sector data volune with 5 sectors per Granule, 8
granul es per lunp, a 33 sector directory positioned at the start of
lunp 35. TLC first 2880 sectors of the first drive section of hard disk
drive O will be allocated to this volune. The drive section consists of
the first 2 recording surfaces of the drive, which may or may not be
all that the drive has. Each recording surface has 306 tracks. Each
track has 32 sectors and the drive's stepping rate code is 0. This data
vol ume cam he accessed by user prograns as drive 1

2. PDRIVE, 0, 2, HDS=(1, 153, 1, 3, 32, 6, 2000, 10000, 0, 8, 0, 33)

specifies a data volume on hard disk drive 1 that has 153 tracks per
surface and 32 sectors per track. The drive section consists of the
2nd, 3rd and 4th recording surfaces. The data vol ume consists of 10,000
sectors beginning with the drive section's relative sector 2, 000.
PDRIVE wi Il compute the sectors per granule and use 8 granul es per

[unp. PDRIVE will conpute the position of the 33 sector directory
within the volume. User prograns will access this data volune as drive
2.

3. PDRIVE, 0, 1, HDS=(0, 153, 0, 4,32,6,0,*,0, 8,0,33) specifies a data vol une
that occupies all 19,584 sectors of the first four recording surfaces
of hard disk drive 0. The vscl, spgl and ddsl1 val ues are conputed by
PDRI VE. User prograns will access this data volume as drive 1

4. PDRI VE, 0, 3, HDS=(0, 153, 0, 1, 32,6, 0,0, 5, 2, 17, 33)

specifies a null data volune (vscl value is 0). NOTE, all other sub-
parameters nmust be valid. If a user programattenpts I/O via drive 3,
DEVI CE NOT AVAI LABLE, error will occur. However, the FREE command and
any other DOS functions that search the various drives will ignore
drive 3.

EXAMPLES OF PDRI VE COVBI NATI ONS

1. Settings to exactly overlay the standard LDOS val ues on a single
Tandy 5 Meg drive where each of 4 volunmes has one surface.

C11 APPENDI X C

HDS=(0, 153, 0, 1, 32, 6, 0, 4896, 5, 8, 61, 33)
HDS=(0, 153, 1, 1, 32, 6, 0, 4896, 5, 8, 61, 33)
HDS=(0, 153, 2, 1, 32, 6, 0, 4896, 5, 8, 61, 33)
| DS=(0, 153, 3, 1, 32, 6, 0, 4896, 5, 5, 61, 33)

This divides the hard disk drive into 4 drive sections, each containing
one data volunme. If you assign the 4 definitions to PDRIVE slots 0 - 3
respectively, you nust have noved the NEWDOS/ 80 systemto hard di sk as
described in section 5. However, if you assign these definitions to
slots 4 - 7 and have previous file data from LDOS operation, you can

| ook at that data via SUPERZAP (if you are interested), and you can

| ook at the directory starting at relative sector 2432.

2. The user has one Apparat 5 Meg drive, fundanentally wants al

hi s/ her user files accessible via drive 1 with a small anmpbunt of work
space on drive 2. The user wants to run using a hard disk system vol une
for drive 0 and to be able to access to his two floppies via slots 4
and 5. Wth SYSTEM option AL = 6, the definitions for slots 0 - 5 will
be as foll ows:

HDS=(0, 306, 0, 2, 32, 6, 6, 720, 5, 8, 17, 10)

HDS=(0, 306, 0, 2, 32, 6, 720, 16864, 11, 8, 80, 33)

HDS=(0, 306, 0, 2, 32, 6, 17584, 2000, 5, 8, 25, 33)
HDS=(0,1,0,1,1,0,0,0,5,8,17,10) a dunmy definition
Tl =A, TD=E, TC=40, SPT=18, TSR=0, GPL=2, DDSL=17, DDGA=2
TI =A, TD=E, TC=40, SPT=18, TSR=0, CPL=2, DDSL=17, DDGA=2

Note that the 8th sub-paraneter (vscl) of HDS is the nunber of sectors
assigned to the data volune (NOT the ending sector number). Slot 3 has
been defined as a dumry (the vscl value = 0) to allow FREE to get to
slots 4 and 5.

3. The user has two Apparat 10 Meg drives and wants the system vol une
on hard disk, 3 hard disk data volunes with slot 1 to contain all the
space of the 2nd drive. The definitions for slots O - 7 could be:

HDS=(0, 306, 0, 4, 32, 0, 0, 5595, 5, 8, 69, 33)
HDS=(1, 306, 0, 4, 32, 0, 0, 39168, 26, 8, 94, 33)
HDS=(0, 306, 0, 4, 12, 0, 5595, 5595, 5, 8, 69, 33)
HDS=(0, 306, 0, 4, 32,0, 11190, 5595, 5, 8, 69, 33)
HDS=(0, 306, 0, 4, 32, 0, 16785, 5595, 5, 8, 11, 33)
HDS=(0, 306, 0, 4, 32, 0, 22380, 5595, 5, 8, 69, 33)
HDS=(0, 306, 0, 4, 32, 0, 27975, 5595, 5, 8, 69, 33)
HDS=(0, 306, 0, 4, 32, 0, 33570, 5595, 5, 8, 69, 33)

APPENDI X C C 12

4. FORVATTI NG YOUR HARD DI SKS

Hard di sks nust be formatted before they can be used with NEWOS/ 80 Version
2.5 or any other DOS. Some hard di sk manufacturers format their hard disks
before shipping the drive and have internal coding to bypass error sectors
automatically, and if this is the case, you may bypass this section on hard
di sk formatting.

NEWDOS/ 80 Version 2.5 does not mmintain an error sector table and assumes the
consecutive sectors that it can read froma hard disk are error free. Bad
(error) sectors nust be hidden from NEWDOS/ 80. One way to do this is to
reduce the nunber of data sectors per track, allowi ng HDFMIAPP to wite a
dunmy sector over the bad spot on the track. Another way is to |later define
(via PDRIVE) the data volunes such that the bad sectors are not part of any
data vol une.

NEWDOS/ 80 DOS conmands FORMAT or COPY with format do not actually format a
hard di sk. The actual formatting nust be done either by a stand al one program
or by a programthat operates under NEWDOS/ 80 but does all of its owmn I/Oto
the hard di sk. NEWDOS/ 80 Version 2.5 provides the program HDFMIAPP to for mat
Apparat's and Tandy's hard disks for the Mddel | or I1l. The format program
for other types of hard disk drives nust be supplied to the user by that hard
disk drive retailer.

Formatting a hard disk destroys all information on that hard disk. If you
must re-format a hard disk, be sure to extract as much val ued infornmation
fromthat hard di sk (you may use program HDBACKUP) as you can before
re-formatting.

Though we reconmend that you format the hard di sk drive before use with
NEWDOS/ 80 so that you will be nade aware of all the error sectors, a previous
format done for another DOS (such as done during the LDOS 5.1.3 hard di sk
initialization) can suffice if there were no error sectors or you know where
they are for bypassing in your definition of data vol umes using PDRIVE, and
if you know the paraneters needed for PDRIVE s HDS paraneter. If you elect to
do this, then bypass the rest of this section (on HDFMIAPP). An exanpl e where
you might want to do this is where you wish to share the hard di sk between
one or nore existing LDOS vol unes and one or nmore NEWDOS/ 80 vol unes, thus

al l owi ng both LDOS and NEWDOS/ 80 to use the hard di sk (though not both at the
sane tine and not the sanme data vol unes).

To fornmat an Apparat or Tandy Model | or IIl hard disk, assure the hard disk
drive is properly connected to the conmputer and power is on; then execute the
DOS command HDFMTAPP, proceedi ng as fol | ows:

1. Reply the relative hard disk drive nunber. This is the sane nunber
as hddnl in the PDRIVE HDS paraneter.

2. Reply the relative nunber of the first surface to be formatted.
When formatting an entire hard disk drive, this value is O.

C 13 APPENDI X C

3. Reply the nunmber of recording surfaces to be formatted. Wen
formatting an entire hard disk drive, the value is the nunmber of
recordi ng surfaces the hard di sk has (the RSC or TPC val ues di scussed
earlier). For Apparat 5, 10 and 15 Meg hard disks, this value is 2, 4
and 6 respectively. For Tandy 5 Meg drives, this value is 4.

4, Reply the nunmber of tracks per surface UPS or tpsl) for this drive.
This is the sane as the number of cylinders the drive has. For Apparat
hard di sks, this value is 306. For Tandy 5 Meg hard disk drives, this
val ue is 153.

5. Reply the relative nunber of the first cylinder (the first track on
a surface) to be fornatted. When formatting an entire hard di sk drive,
this value is 0.

6. Reply the number of cylinders (number of tracks on each surface) to
be formatted. When formatting an entire hard disk drive, this value is
the sane as given in #4 above.

7. Reply the track stepping rate code. Use a value of 15 here as we
are not too concerned with a slow stepping rate during formatting.

8. Reply your intended data sectors per track. The normal val ue here
is 32. The tracks supposedly have a capacity for 33 sectors per track
but test have shown that many parity errors occur. Specifying 32
sectors per track does allow for one error sector per track to be
automatically specially encoded so that NEWDOS/ 80 will never see it.

9. Reply the sector interleave count. W recomrend a value of 21 if
there are to be 32 sectors per track. This value allows tine for the
DOS I /O routine, the transfer of the bytes on the cable to/fromthe
drive's buffer, the actual read/wite of the sector by the drive, and 1
to 2 milliseconds for the user programto invoke the I/O for the next
sequential sector. This value of 21 is also optinal for the HDBACKUP
program which is too slowas it is. Values 19 and 20 will work, but
all ow much less tinme for the user programto turn the 1/0O around.

Val ues 22 to 30 allow the user nore turn around tine but slowy
decrease the nunber of 1/0Cs per second that can be done. Values 0 - 18
allowtoo little time for the above functions and cause the hard di sk
to wait till the next revolution (16.7 ns) for the next sector

10. Reply Nif you wish to restart the specifications again at step 1
above. Reply Y if the programis to start the fornat.

11. Once started, the formatting will proceed, blinking an asterisk in
the di splay upper right corner to indicate progress. If a track cannot
be formatted with the required nunber of sectors, an error will be

di spl ayed giving the cylinder, head and nunber of error sectors above
and beyond the nunber inplicitly allowed in step 8 above. A track that
has some error sectors and some good data sectors will have the good
sectors nunbered fromtrack relative sector 0 consecutively on up with
t he hi gher numbered sectors for that track sinply not there.

APPENDI X C C 14

12. During HDFMTAPP execution, hol ding down the up-arrow key causes the
programto terminate and the right-arrow key causes the programto
pause. After right-arrow, pressing ENTER causes the programto

continue. This pause/cancel function is useable only through the
keyboard matrix, not via renote termnals.

13. Wien the format is conplete, the nunber of tracks with too nmany
errors will be displayed. If there are any such tracks, you SHOULD
reformat the hard di sk using a | esser sectors per track value. ;lark
the resulting sectors per track value sptl on a |abel on the hard disk
to remnd you of what sptl value MJST be used in all PDRIVE definitions
for data volunmes on that drive. HOAEVER, when only a snmall nunber of
consecutive tracks have all the error sectors, you nay decide to |eave
the error sectors alone and define your volunmes (via PDRIVE) in such a
way as to assure that the error tracks at not assigned to any vol une
(i.e., ending one volume on the |last sector of the first good track
preceding the bad track range arid starting another volume on the first
sector of the first good track follow ng the bad track range). If the
error tracts are assigned to a volune, NEWOS/ 80 will give SECTOR NOT
FOUND error when ever 1/Ois attenpted to the a bad, non-existent
sector. NEWDOS/ 80 does not mmintain any bad track or bad sector tables.

14. If all tracks have beer, formatted with the required nunber of
sectors, the hard disk is now ready for use by NEWOGOS/ 80

It is possible, due to the extensive specifications, for the HDFMIAPP program
to fornmat just one track on the hard disk. This nay be of interest to a few
users when a track has apparently gone bad and an attenpt is to be nade to
refornmat just that one track

5. MOVI NG NEWDOS/ 80 VERSION 2.5 TO THE HARD DI SK.

Usual Iy, you want to have slots 0 to 3 as hard di sk volumes and still have
access to your two floppy disc drives. For this, it is necessary to operate
usi ng the NEWDOS/ 80 Version 2.5 system vol ume, which nust be volune 0, from
the hard disk. This section steps you through setting up NEWDOS/ 80 Version
2.5 to run fromthe hard disk. The hard disk is assumed previously formatted.

1. Be sure you know how to use the DOS command PDRI VE, especially with
the Hard Di sk Specification paraneter HDS

2. Mount a copy of the NEWDOS/ 80 Version 2.5 hard di sk system diskette
in floppy drive 0. This will be known as the system di skette as
different fromthe hard di sk system volune which will be on the hard

di sk.

3. Choose one of the system diskette's PDRIVE active slots whose
nunber is greater than one. For this exanple slot 2 will be used (the
SYSTEM option AL nust be at least 3). If you choose a different slot
nunber, then use that number in place of 2 in the follow ng di scussion

4. Usi ng PDRI VE, 0, 2, A, HDS=- - - - - define floppy system di skette PDRI VE
slot 2 with the specifications wanted for the hard di sk system vol une.

C 15 APPENDI X C

5. Execute the DOS commrand

COPY, 0, 2,, FMTI, CBF, USD
and respond to the requests for SOURCE and DESTI NATI ON di skettes (even
t hough the destination is on a hard disk). GAT OVERFLOW error nmmy occur
if the spgl value for the destination is |less that that of the source;
i n which case you nust increase the destination spgl val ue.

6. Execute PDRIVE, 2 to see the hard disk system volune's
specifications for the 10 slots defined on that volume. Note that the
definition for slot 2 has been duplicated in slot 0. This was done as a
normal part of the COPY done above. Don't confuse the specifications of
PDRI VE, 2 which refers to systemcontrol data on drive 2, the intended
hard di sk system volune, with those of PDRIVE, 0 which refers to system
control data on drive O, the floppy system diskette.

7. Using PDRIVE, 2, ----- define the PDRIVE specifications as you intend
for that volume to be used as the systemvolune (drive 0). Since
PDRI VE, 2,2 has been duplicated as PDRIVE, 2,0 in anticipation of that
hard di sk vol ume beconi ng the system vol une, you MJUST now redefine the
PDRI VE, 2,2 slot for another volune or by setting its vscl value to O,
causing slot 2 to be undefined. The specifications for PDRIVE, 2 slots

0 - 3 nust be for hard disks volunes only. Definitions for the floppies
nmust be in slots 4 - 7 which correspond to the old drives 0 - 3
respectively. If one or nore of the slots 4 - 7 are not used for
floppies, then they may be used for hard di sk volunes, thus allowi ng a
maxi mum of 8 hard di sk volunes to be active at any one tine. Do not go
on to the next step until all PDRIVE, 2 slots have been defined as you
will want themto be in the systemoperating fromthe hard disk, though
it is not necessary to change any of them except slot 2 and you shoul d
not change slot 0. Renmenber, you cannot use PDRI VE paraneter A when
doing PDRIVE, 2 definitions as that volune is not the current system

vol ure.

8. Usi ng SYSTEM 2, AL=xxx, specify the nunber of PDRIVE,2 slots to be
active. xxx nust be between 1 and 8, and nust be at least 5 if any
floppies are to be used.

9. The hard di sk system vol ume now has the correct specifications, but
we need a hard di sk boot diskette (also known in this section as the
boot diskette) to enable RESET (al so known as BOOT), which rmust start
on floppy drive 0, to switch to the hard di sk system volunme. This

di skette nust contain at |east BOOI/SYS, DI R/ SYS and SYSO/ SYS, and nust
have its PDRIVE slot 0 defined exactly as for the hard di sk system

vol unme. So we proceed to do this.

10. If the systemdiskette's PDRIVE, 0,1 specification is not identica
to that for PDRIVE, 0,0, then make them so by executing the conmand:
PDRI VE, 0, 1=0, A

11. Assignh an ot herw se unused di skette as the hard di sk boot diskette
and | abel it as such. Munt the boot diskette in floppy drive 1

12. At this point, the systemdiskette is in floppy drive 0, the hard
di sk boot diskette in floppy drive 1, and the hard di sk system vol une
is on the hard di sk. Execute the DOS command:

FORMAT, 1,,,.,Y

APPENDI X C C 16

13. When done, execute to DOS comrand:

COPY, SYS0/ SYS: 2, : 1
to nove a copy of SYSO/SYS, the resident DOS, fromthe hard disk system
volume to the hard di sk boot diskette. Since it is the first file
pl aced on the boot diskette, aside from BOOI/SYS and DIR/ SYS, it will
autonmatically be placed in the proper place for RESET.

14. \When done, execute: PDRIVE, 1,0=2 to nove the proper hard disk
system vol une specification to the boot diskette's PDRIVE slot O.

15. At this point, you may want to change the PDRIVE, 0,2 and PDRI VE, O, 1
definitions back to what they were before steps 3 and 10 above. This
step i s optional

16. Renove the system diskette fromdrive 0. Mve the hard di sk boot

di skette fromdrive 1 to drive 0 and press RESET. Conputer execution
will read the boot sector and then the resident DOS, SYSO/SYS, fromthe
boot diskette in floppy drive 0 and then shift to the hard disk. You
may now take the hard di sk boot diskette out of drive O or leave it in,
in which case it may be accessed via the PDRIVE slot 4 (used for floppy
drive 0 when the hard disk systemis in use) if PDRIVE 0,4 is defined
for a floppy. The diskette can be accessed by user prograns as drive 4.

You may use the hard di sk boot diskette as a nornal data diskette by copying
data files on to it. Renmenber though, it is the hard disk systenis boot

di skette and its SYSO/SYS is the resident DOS that is |oaded into main menory
at RESET time and remains there until the next RESET.

*xxxxkkxkx \WARNI NG, A backup up of a hard di sk boot diskette will not
transfer its booting-up-the-hard-di sk capability unless the backup is
done using format 5 COPY with the BDU option

The hard di sk systemvolunme is drive (slot) O when operating the systemfrom
the hard di sk. The hard di sk system vol une does NOT have to be positioned at
the beginning or a hard disk drive; in steps 4 and 5 above, you are all owed

to place the hard disk system vol une where you wi sh on the hard di sk

The file SYSO/SYS on the hard di sk boot diskette MJST remain exactly

identical to the SYSO/SYS on the hard disk system volune. If you alter one,
you MJST alter the other. This is necessary because the hard di sk system
thinks its own SYSO/SYS is in the resident DOS area (4000H - 4CFFH and OF900H
- OFFFFH) at all tinmes when actually it is the SYSO/SYS fromthe hard di sk
boot di skette.

If you only have one floppy drive, then the foll owi ng changes rmust be made to
t he above procedure:

1. Step 10 above is excl uded.

2. In step 11, do not nount the boot diskette into drive 1

G 17 APPENDI X C

3. In step 12, change the conmand to be FORMAT,O0,,,,Y and perform
di skette nounts as requested where the SYSTEM di skette is the system
di skette and the DESTI NATI ON di skette is the boot diskette.

4. In step 13, change the command to be COPY, $SYS0/ SYS: 2,:0 Performthe
di skette nounts as requested where the SYSTEM di skette is the system

di skette, SOURCE diskette is the hard di sk system vol une and the

DESTI NATI ON di skette is the boot diskette.

5. Replace step 14 with the foll owi ng action. Enter SUPERZAP and at the
menu, reply CDS. Renpve the system diskette fromfloppy drive 0, and
nount the boot diskette in floppy drive 0. Reply Y. Reply 2,2 for the
source drive and relative sector. Reply 0,2 as the destination drive
and relative sector. Reply 1 as the sector count. Press ENTER to return
to nenu. Renpunt the systemdiskette in floppy drive 0. Reply EXIT to
exit SUPERZAP and return to DOS READY.

APPENDI X C C 18

6. DEFI NI NG PDRI VE SLOTS FROM A VOLUME DEFI NI TI ON FI LE

The definition of hard disk volunes via PDRIVE is nore difficult and nore
critical than for floppy disk volunmes. Therefore, it is recormmended that the
user carefully plan out his/her allocation of hard di sk space anpbngst the
various volumes and store the definitions (the HDS paranmeter part) into an
ASCIl text file (called a data volune definition file) created and updated by
using either CHAINBLD or SCRIPSIT or both. Do this very, very, very carefully
as you can create havoc anongst your data if two or nore data vol unes share
the sane hard di sk sectors. Under NEWDOS/ 80 Version 2.5, you have great
flexibility in assignment of hard disk space to data volunes, but with this
flexibility cones conplexity of definition

Each record within the data volune definition file nmust start with a unique
but arbitrarily assigned identification integer. Follow ng the integer mnust
be a comm followed by the i ntended PDRI VE definition excluding the initial
part of the PDRI VE conmand (the PDRI VE, dnl, dn2, portion) and the ,A (for
activation) as these parts of the PDRIVE command will be supplied by the
EXTPDRI V/ BAS pr ogr am

Since each definition record within the data volune definition file starts
with an integer, you nay i nbed comments within the file as you |ike provided
the comment record does not start with an integer

It is strongly recomnmended that you keep copies of the data volunme definition
file on floppy diskettes in case that file on your hard di sk becones
unusabl e. Renenber, this is your master copy of the hard di sk space | ayout!

Assum ng that you have carefully constructed your data volume definition
file, you may assign one or nore of these definitions to the various PDRIVE
sl ots when needed by running the BASI C program EXTPDRI V/ BAS.

1. The programwi |l ask for the filespec of your volume definition file
and then open it.

2. The programwi ||l ask for the identification integer of the
definition to be used. Respond with an EXACT copy of the integer that
starts that definition's record in the file. The programw || then
search the file for the record

3. When found, the programwll ask for the two nunmbers needed for the
PDRI VE, dnl, dn2, --- function. Respond with the two nunbers separated by
a conma. The first nunber, dnl, (usually 0) specifies which data vol une
contains the systemcontrol infornmation, which will be changed by the
PDRI VE command. The second nunber, dn2, specifies which PDRIVE sl ot
definition is to be changed.

4. The programw |l then ask if slot definitions are to be activated
within the resident DOS (i.e., the ,A PDRIVE paraneter). Reply Y if so;
Nif not.

5. The programwi |l then build the appropriate PDRI VE command and

execute the command via DOS- CALL. You will see the PDRIVE results
di spl ayed.

C 19 APPENDI X C

6. The programw ||l then ask if there is another definition fromthe
same file to be applied. If you reply Y, the programreturns to step 2
above. If you reply N, the program ends.

EXAMPLES of data volune definition file records:
1. 103, HDS=(O0, 153, 0, 4, 32, 6, 0, 2880, 5, 8, 35, 33)
2. 91, HDS=(1, 153, 0, 4, 32, 6, 1000, 2000, 0, 8, 0, 33)

3. 44, Tl =A TD=E, TC=40, SPT=18, TSR=0, GPL=2, DDSL=17, DDGA=2

7. BACKI NG UP HARD DI SKS TO DI SKETTE:

Copi es of user data stored on hard di sk nust be kept el sewhere in case the
hard di sk crashes, a program mal functi ons or a user goofs. Users MJST, from
time to tinme, nake backup copi es of valued data, the frequency of backup
dependi ng upon how often the data changes and how val uable the data is.

NEWDOS/ 80 Version 2.5 provides the HDBACKUP (hard di sk back up) function as a
way of saving files fromthe hard disk(s) to floppy diskettes, and a way of
restoring one, sonme or all of those files back onto the hard disk(s).

HDBACKUP saves by file rather than by full volune contents. It uses this
consi derably sl ower technique because over 50% of the restores that are
eventual ly done involve only a selected set of files and not a full media or
data volute. Restores to a hard disk don't have to be the result of a hard
disk failure but nore frequently are due to user m stakes or user program
mal function | ogically danmagi ng or destroying certain files, and the restore
should allow only the danaged files and their interrelated files to be
restored, |eaving unchanged all other files on the hard disk(s) involved.
Unfortunately, saving by file requires nore adm nistrative consideration than
does saving by entire volune contents; so we hope the greater flexibility
will be worth it.

For purposes of HDBACKUP di scussion, a backup is the content of the one or
acre diskettes used to contain the files copied fromdata vol unes during the
execution of the HDBACKUP program s SAVE function. These di skettes nust be
preformatted and, after being used by SAVE, cannot be read/witten using
standard DOS functions; however, they can be read/witten usi ng SUPERZAP di sk
(not file) node.

In this discussion of the HDBACKUP function, a data volune refers to one of
the active hard disk data vol unes defined via PDRI VE.

HDBACKUP/ CVMD is the programthat (1) creates a backup containing specified
files fromthe various defined data volunes (as defined by PDRI VE) of your
system (2) lists which files are contained within a backup and (3) restores
specified files froma backup to the various defined data vol umes of your
system HDBACKUP is the method under NEWDOS/ 80 Version 2.5 of backing up your
files fromhard disk or diskette and, if necessary, restoring one, sone or
all of those files back to the hard disk or diskette. Under the SAVE

par amet er, HDBACKUP creates a backup that spans one or nore diskettes. Under
the LI ST paranmeter, HDBACKUP |ists the filespecs of and errors associ ated

APPENDI X C C 20

with the files contained in the specified backup. Via the RESTORE paraneter,
HDBACKUP copi es specified files fromthe backup to specified data vol umes of
your system

The HDBACKUP SAVE function saves a file's contents, not its attributes.

Except for the file nanme, name extension, data vol une nunber and, if NND not
specified, the logical record length, no other attributes of the file are
saved such as passwords, protection level, etc. SYSTEMfiles are not SAVEd.
The user is responsible for backing 4p systemfiles to regular diskettes
using the COPT' conmand; nornally it is sufficient to sinply maintain, copies
of your original NEWDOS/ 80 Version 2.5 Hard Di sk System di skette and your
regul ar NEWDOS/ 80 Version 2 Systemdiskette. If the NND paraneter is
specified, systemfiles included in the INCLUDE |ist are copied, but are no

| onger marked as systemfiles.

Provi ded the NND paraneter is specified, the HDBACKUP function is designed to
attenpt to run with TRSDOS-1i ke DOSS ot her than NEWDOS/ 80 Version 2.5. Via
the NED parameter, you nust informthe HDBACKUP/ CMD program of certain val ues
for that DCS.

The HDBACKUP program requires passwords be disabled, as standard file OPENs
are done without passwords in the filespecs. If passwords cannot be disabl ed
in the current system the passwords nust be taken off the files being backed
up. SYSTEM option AA=N di sabl es passwords i n NEWDOS/ 80.

The HDBACKUP program requires, unless the NND paraneter is specified, that
all volume directories be named DI R/ SYS.

Usual |y after the user has responded to a request, HDBACKUP displays an * to
indicate that it is no |longer waiting for an operator response.

HDBACKUP bl i nks an * in the upper right corner of the display screen to |let
you know that is preceding in an orderly fashion. The speed of the blinks
will vary due to the different functions.

The RESTORE function of HDBACKUP takes a very long tine to initialize (in one
test of 3444 files, it took 30 minutes). This extra initialization (1)
perfornms KlLLs if RENEW specified, (2) creates all new files, (3) CLOSES the
files to store the new EOF and rel ease any excess di sk space on the data
volurme, (4) if NND not specified, wites the | ast sector of each file to

al | ocate any needed di sk space and (5) if NND not specified, updates the

| ogical record length in the directory.

The HDBACKUP/ CVD program expects the diskettes used for the backup to already
be formatted. The programwill wite over the entire diskette; after SAVE
the diskette will not have a directory. The programw |l not tolerate a bad
sector when witing to the backup diskettes. If a sector is bad, you have
three options: (1) retry the wite, (2) cancel the entire SAVE function, or
(3) restart the SAVE function at the beginning of the current backup

di skette. If you choose option 3, you will be asked for the current backup
vol ume agai n; you should then (and not before) nount a different previously
formatted diskette (renenber to label it properly) and place the other

di skette in your bad diskette collection

C21 APPENDI X C

The HDBACKUP conmand sequence i s:

HDBACKUP
fcl

PRI NT
NND=(fi |l especl, r/n, spgl, gpl 1, spvl)
BSN=l i st 1
TITLE=ti tl el
DATE=dat el
TI ME=ti mel
SVL=list2
RVL=li st 3
SLOW

SKI P

RENEW
MAXERRS=ec 1
TEST

| NCLUDE
EXCLUDE
*END

HDBACKUP i nvokes the HDBACKUP/ CVMD pr ogram HDBACKUP nust be the only
paranmeter on the first comand |ine (the comand |ine used by DOS to invoke
the program). This programthen displays the cursor and waits for the user to
i nput subsequent command |ines. Command paraneters are processed until the
*END paraneter is encountered. There nust not be extraneous characters within
a command line. A conmand |line may contain nultiple paraneters separated by
conmas, but a paranmeter must be fully contained within a conmand |ine. A
command line is limted to 79 characters in NEWOS/ 80 and 63 characters for
nost ot her DOSs.

The user will generally build the command |lines and the file specifications
for INCLUDE or EXCLUDE into a CHAIN (aka DO) file as it is strongly
recomended t hat HDBACKUP commands be constructed very carefully. Though
CHAI NBLD wi I I work, it is reconmended you build your chain file via a word
processor, storing the resulting file as an ASCII file.

**** \WArni ng, be sure that the chain file has no extraneous characters
after the end-of-line character for the SEND statenent; otherw se
subsequent responses needed for the HDBACKUP execution will receive bad
dat a.

The TEST paranmeter was included to allow the user a '"dry' run to test the
wor kability of the conmand paraneters. If you don't know what your are doing,
gain sone faniliarly by using the TEST paraneter before doing a live run
Remenber, you can't test a RESTORE until you have a backup to test with.

**** \WArni ng, SAVE with TEST does wite backup control information on
t he backup's 1st diskette; be sure that diskette is intended for a
backup.

fcl fcl nmust be the first parameter after HDBACKUP. fcl specifies the
function to be perforned which is one of the foll ow ng:

APPENDI X C C 22

1. SAVE Anew backup is created having title, date and tine as
specified by the TITLE, DATE and TIME paraneters. The files specified,
either explicitly or inplicitly, are copied fromthe specified data

vol unmes to as nany backup diskettes as necessary. Parameters BSN, SVL
and *END are required. Optional paranmeters are PRINT, NND, TITLE, DATE,
TIME, SLOW SKI P, MAXERRS, TEST, |NCLUDE and EXCLUDE. |f one of TITLE
DATE or TIME is not specified, the HDBACKUP programwi || ask for that
parameter. If NND is specified, | NCLUDE nmust be specified

2. LIST This function lists the files contained within the
speci fi ed backup and includes their associated error sector nunbers.
Required paraneters are BSN and *END. Optional paraneters allowed are
PRI NT, NND, TITLE, DATE and TIME. The listing starts with the backup's
nane, date, time, file count and error count. Then for each file in the
backup's table of contents, the following are |isted:

1. The filespec for the file.

2. If the file has been deleted fromthe backup table of
contents, '***** DELETED *****' s displayed and steps 3 - 6 are
bypassed.

3. The file's EOF value in xxx/yyy fornmat where xxx is the
relative sector within the file and yyy the relative byte within
the sector.

4. The file's logical record length, 1 - 256.

If NND specified during the SAVE that made this backup, the
record length may or may not be correct if the file's
record length prior to the SAVE was not 256. This occurs
under NND as HDBACKUP does not get the record length from
the directory but records whatever record | ength appears in
the FCE after OPEN. Norrmal NEWDOS/ 80 operations do not use
the file's record length fromthe directory, but many users
want it correct anyway. If a file's logical record length
was changed during the SAVE and RESTORE, the user nay
correct it by using the LRL paranmeter of ATTRIB (see
regul ar NEWDOS/ 80 Version 2 ZAP 007 (Model 1) or ZAP 004
(Model 111).

5. The location within the backup of the file's header sector
expressed as a backup vol une nunber and a relative sector within
that volune. This is of interest only to those view ng/updating
t he backup via SUPERZAP. Vol unes (diskettes) of a backup are
nunbered consecutively from1, not O.

6. If the file has any error sectors, they are listed each in the
deci mal fornat:

sssss/ee/vvv/rrrrr
wher e:

1. sssss is the sector's relative nunber within the file.

C 23 APPENDI X C

2. ee is the DOS error code.

3. vvv is the number of the backup vol ume containing the
error sector

4. rrrrr is the sector's relative nunber within the backup
vol ure.

3. RESTORE The files specified, either inplicitly or explicitly, are
copied fromthe backup to the specified data vol unes. Required
parameters are BSN, RVL and *END. Optional paraneters allowed are

PRI NT, NND, TITLE, DATE, TIME, SLOW SKIP, TEST, RENEW | NCLUDE and
EXCLUDE

PRI NT This paraneter inforns the HDBACKUP program that display
information is to be sent to the printer as well as the display. If PRINT is
not specified, only the display will be used. If PRINT is specified, the
programwi || display WAI TING ON PRINTER, and then, if the printer is not
ready, the programw || hang.

NND=(fi | especl, r/n,spgl, gpl 1, spvl) This option specifies that the Disk
Operating System (the DOS) is not WEWDOS/ 80 Version 2.5, though it can be. If
NND i s specified, the follow ng hol d:

1. SLOWis inplied.
2. For SAVE, | NCLUDE is required.
3. NND nust be specified inmediately after fcl and before BSN

4. For RESTORE, the pre-allocation of needed file space during
initialization is not done; an out-of-space error will not be detected
until the file is actually restored.

5. file logical record |l engths recorded in table of contents during
SAVE or in the data volunme directory during RESTORE nmay be wrong if
t hey were not 256.

HDBACKUP i s designed to run with NEWDOS/ 80 Version 2.5, but users initially
may have their hard di sk data under a different operating system thus
creating a dilenmmm, as NEWOS/ 80 cannot process directories for other DOSs.
Recogni zing this as potentially a serious problem an attenpt (via the NND
paranmeter) has been nmade to all ow HDBACKUP to run under another DOS using
faked extents in the FCB used for backup diskette I/O This attenpt will not
work with a DOS that determ nes a diskette's characteristics fromthe

di skette itself (as HDBACKUP wites over the entire backup di skette) or which
autonmatically changes a drive's specification when an error i s encountered.
So far, the only successful tests have been (1) with Tandy's Mdel 111 Hard
Di sk Operating System (LDOS 5.1.3) using single sided, double density, 40
track drives as the backup drives specified in the BSN paraneter with

NND=(TEMPFI LE: O, N, 6, 3, 720), and (2) with Tandy's Mdel | Hard Di sk Qperating
System (LDOS 5.1.3) using single sided, single density, 35 track drives as

t he backup drives specified in the BSN paraneter wth

NND=(TEMPFI LE: 0, N, 5, 2, 350) . Apparat does not plan to test under the other
DOSs or other configurations, and Apparat reserves the right to withdraw the
NND paraneter and all support for it at any tinme and w thout notice.

APPENDI X C C 24

I f using HDBACKUP with the NND paraneter does not work with your other DGCS,
the user will have to find some other way of offloading the files from hard
di sk under the other DOS and rel oadi ng them under NEWDOS/ 80 Version 2.5

***x* WArning!!! Before using HDBACKUP to offload files under a DOS that is
not NEWDOS/ 80 and then reloading the files to hard di sk under NEWDQS/ 80, the
user should offload the valued files to diskettes using the other DOS' s

nor mal backup procedures. This provides the user with a second backup source
shoul d the conversion to NEWDOS/ 80 fail.

When using the NND option, certain extra informati on MUST be provided to the
HDBACKUP program |f you don't know what these values are, call the
distributor for that DOS; don't call Apparat.

filespecl is the filespec of new or existing file that HDBACKUP can
wite one sector to in order to deternine a correct FCB to be used for
backup diskette 1/O HDBACKUP will wite garbage into that one sector
and will not CLOSE the file. The file filespecl nmust be for a file
within a volune that is already nounted when HDBACKUP begi ns executi on;
further, for some DOSs, it nay be necessary that the file be on a

di skette with the sane spgl, gpl1l and spvl characteristics specified in
this NND paraneter. The diskette can be nounted on a drive specified in
BSN bel ow as HDBACKUP wi Il conclude its use of file filespecl before it
asks for the first backup diskette.

r/n is one character, either Ror NN Ris specified if the ECF
field of FCBs (the File Control Block in main nmenory, not the directory
FDEs) for this DOS are in Relative Byte Address format (such as al
NEWDCS versions and Model 11 TRSDOS 1.3). Nis specified if the EOF
field of the FCBs for this DOS are in Next Record Address fornmat (such
as LDOS (regular and hard disk), Mdel | TRSDOS 2.3 and Mdel 111
TRSDOS 1. 1)

**x*xx*xxx*x* The choice of Ror Nis critical. Choosing the wong
value will cause every file not ending on a sector boundary to be
assigned the wong EOF in the backup, thus naking the file one
sector too long or too short. Further, reportable errors may
occur.

Once again, the NEWDOS aut hor apol ogi zes for having brought

Rel ati ve Byte Addressing to the TRS-80 world (the FCBs, not the
directories) with the NEWDCOS rel ease in March, 1979, thus causing
t he confusi on between RBAs and NRAs (Next Record Addressing). NRA
was the standard at that tine and has renmai ned the LDOS standard
(TRSDCS on the Moddel 111 changed to RBAs in July, 1982). NEWDOS
shifted to and remains with RBAs because that nethod is the nore
reliable method for arbitrary randomdisk 1/Q

spgl is the number of sectors per granule for this DOS for the
backup diskettes that will be mounted on floppy drive(s) specified in
BSN bel ow. (LDOS Hard Di sk System uses spgl = 5 for single density 5
i nch diskettes and spgl = 6 for double density).

gpl 1 is the number of granules per lunp for this DOS for the

backup di skettes that will be mounted on the floppy drive(s) specified
in BSN below. This is also known as granul es per cylinder and is the

C 25 APPENDI X C

nunber of bits per byte used in the GAT sector to account for granule
al l ocation. LDOS Hard Di sk Systemuses gpll = 2 for single sided single
density 5 inch diskettes, gpll = 4 for double sided single density,
gpll = 3 for single sided double density diskettes and 6 for double

si ded doubl e density.

spvl is the number of sectors per backup diskette. This is the
total number of sectors on a diskette (720 for single sided, double
density 40 track 5 inch diskettes, 350 for single sided, single density
35 track 5 inch diskettes, 1440 for doubl e sided, double density 40
track 5 inch diskettes). Watever the nunber, the DOS nust be capable
of doing I/O for that nunber of sectors per diskette.

HDBACKUP/ CMD nmay be nmoved to another DOS via the foll owi ng steps:

1. Under NEWDOS/ 80 Version 2.5, execute LMOFFSET. Respond D. Respond
HDBACKUP/ CVMD. Respond new | oad address = 7000. Respond N to request
appendage. Record the new start, end and entry address val ues di spl ayed
(will be used in step 4 below). Respond <ENTER> to indicate | oad point
not bei ng changed agai n. Respond N to keep DCS enabl ed. Respond D
Respond XXX/ CMD: 0 to wite the nodified nodul e back to di sk. Respond N
Respond Pl again. You should now be back at DOS READY

2. Execute the DOS command LOAD, XXX/ CVMD: 0. This | oads the
| oad- of fsetted HDBACKUP program created in step 1 into nain nenory from
where it will be witten to the other DOS's diskette in step 4 bel ow.

3. Load the other DOS diskette into drive O and press RESET to bring up
that DOS. Be sure that this DOS does not clear user menory upon coning

up.

4. Use the DUW comand for that DOS to store onto that DOS' s disk the
HDBACKUP/ CVD program | oaded into main nmenory in step 2. The DUW
command will need the start, end and entry addresses recorded in step

1. See that DOS' s nmnual for explanation of the DOS command DUMP. For
LDCOS, this conmand will be:

DUMP HDBACKUP/ CVD: 0 (START=X start', END=X end', TRA=X entry')

where start, end and entry are the hexadeci nal addresses recorded in
step 1 above.

5. If that DOS's DUWP does not allow the fil espec HDBACKUP/ CVMD: 0, use
what it will allow and then change the file's name via RENAME

6. The HDBACKUP programis now ready for execution on that DOS.

APPENDI X C C 26

BSN=Iist1l The Backup Sl ot Nunber specifies either one or two slot nunbers
(if two, listl nust be enclosed in parenthesis) of the slots (PDRIVE active
vol unes) to be used for reading/witing the backup diskettes.. These slots
nust be defined in PDRIVE as floppy disk drives. None of the backup sl ot
nunbers may be included in the volume nunbers listed in the SVL or RVL
paraneters. If two slot nunbers are specified, they nust have the same PDRI VE
definition. If only one slot is specified, all backup diskettes will be
nmount ed as needed using that one drive. If two slot nunbers are specified,
the backup's volunme 1 is left nounted on the first drive throughout the
HDBACKUP function and the second drive is used for the other volunes. Since
backup volune 1 is frequently referred to or updated during the SAVE or
RESTORE, assigning two slots (drives) greatly reduces operator actions. |f
you only have two drives, run the systemfromthe hard di sk so that floppy
drive 0 is free to be used as a backup drive.

TITLE=titlel titlel is the O to 48 printable character title of the
backup. For SAVE, this title is assigned to the backup; if not specified in
the conmand lines, the programw |l ask for it. For LIST and RESTORE, an
error will be displayed if TITLE is not specified or titlel does not natch
that of the backup; the user may elect to use the backup anyway. Were TITLE
is specified in a command line, it nmust be the | ast parameter of that |ine as
titlel, even if over 48 characters, is considered to be the rest of the line;
t he excess characters are ignored. During SAVE, when a backup diskette is
first asked for, the programwll reject the diskette if it has been used for
a previous backup with the sane title, date and time (as it nmay really be an
earlier volune of this backup).

DATE=datel datel is the backup's date in nun/dd/yy format. For SAVE, this
date is assigned to the backup; if DATE is not specified, the operator will
be asked for it. For LIST and RESTORE, an error will be displayed if DATE is
not specified or datel does not nmatch the backup's date, but the user nay

el ect to use the backup anyway.

TI ME=ti nel timel is the backup's tine in hh:mmss format. For SAVE, this
time is assigned to the backup; if TIME is not specified, the operator wll
be asked for it. For LIST and RESTORE, an error will be displayed if TIME is
not specified or tinel does not nmatch the backup's tinme, but the user nay

el ect to use the backup anyway.

SVL=list2 This Save Vol une List paranmeter is required for and used only if

the function is SAVE. list2 specifies the volunme(s) whose files are to be
copied to the backup during SAVE. |If list2 has nore than one sub-paraneter,
list2 nmust be enclosed in parenthesis. list2 consists of one or nore sub-

paraneters, separated by conmms, of the type

vnl speci fies the nunber of an active slot whose data volune files,
as restricted by I NCLUDE or EXCLUDE, are to be copied to the backup
vnl may have integer values 0 to xxx, where xxx is one |less than the
SYSTEM AL paraneter. vnl nust not equal a slot nunber specified in the
BSN par aneter.

RVL=list3 This Restore Volune List paraneter is required for and used only

if the function is RESTORE. This paraneter specifies (1) vol ume nunbers whose
files in the backup, as restricted by | NCLUDE or EXCLUDE, are to be restored

and (2) optionally, the data volune to receive the files of another vol une.

C 27 APPENDI X C

If Iist3 has nore than one sub-paraneter, |ist3 nust be enclosed in
parent hesis. list3 consists of one or nore sub-paraneters, separated by
commas, of the type:

vr2=vnl The files contained in the backup for volune vnl, as
restricted by | NCLUDE or EXCLUDE, are copied to volume vn2. Vol une
nunmbers in the I NCLUDE or EXCLUDE list refer to vnl, not vn2. If vn2
and vnl are the same vol une nunber, the vn2=vnl sub-paraneter may be
witten as Just vnl. vn2 may have integer values 0 to xxx where xxXx is
one | ess than the SYSTEM AL paraneter. vn2 nust not equal a sl ot
nunber specified in the BSN paraneter.

SLOwW This option can only be used with NEWOS/ 80 and specifies that

t he HDBACKUP programis NOT to use its faster diskette I/O when

readi ng/witing the backup (not the data vol unmes) diskettes. SLOWNis inplied
by NND. Nornmally, NEWDOS/ g0 Version 2.5 uses a faster node of backup diskette
I/Oin the hope of increasing the speed of SAVE and RESTORE by 20-40. SLOW
shoul d be specified only if the fast I/O appears to actually run slower than
normal diskette 1/O You can study this by tinmng the time to read or wite a
backup di skette, preferably a volune other than backup volume 1.

SLIP Duri ng HDBACKUP processi ng when an error is encountered and the
operator would normally have a 'SKIP'" option allow ng processing to continue,
if the SKIP command paraneter was specified, the SKIP option will
automatically be assumed. Normally, this option will not be specified;
however, there are tinmes when a SAVE or RESTORE rnust acconplish what it can
despite errors. For exanple, if part of a hard di sk has gone bad and the disk
is to be sent to the repair shop where it may or nmay not retain its current
data, it may be inportant to assure that whatever data can be retrieved, is
retrieved with the problemof restructuring bad files addressed | ater

RENEW This option is used only with RESTORE. Duri ng HDBACKUP
initialization after the files to be restored have been determ ned, a KILL is
i ssued to the destination volume for each file that is to be restored. If the
file did not exist on the destination volune, the KILL does nothing. Nornal
RESTORE initialization will then recreate the files on the destination

vol unes. The purpose of RENEWis to reallocate file space in, hopefully, |ess
fragmented units (which can increase the efficiency of prograns using these
files); RENEW should only be used when all, or alnost all, files of a data
vol unme are being restored.

MAXERRS=ec1 ecl is the nunmber of errors the backup is to provide for in
its error table. The default value is 640 with 6400 the maxi mum ecl val ue
al l owed. MAXERRS is used only in the SAVE function

TEST This option allows initialization processing to occur, including
backup control information wites. Wien the initialization is done, HDBACKUP
term nates with ' TEST COWLETED error. TEST allows the user to test the
conmand paraneters, including the | NCLUDE or EXCLUDE i sts.

*** Warning, TEST with SAVE wites control infornmation to the backup's
first diskette; this is necessary for a good test.

I NCLUDE and EXCLUDE | NCLUDE and EXCLUDE are nutual ly excl usive keywords.

Each nust term nate the current conmand input line. Subsequent conmmand |ines
until but not including the *END command |ine conpose a file list with each

APPENDI X C C 28

line specifying either a volume nunber preceded by a colon (i.e., :3) or the
filespec, w thout passwords, of a file to be I NCLUDEd or EXCLUDEd. The nunber
of volunme nunbers or filespecs allowed in a file list is linted by computer
mai n nenory constraints but is over 1500.

If the conmmand |ine consist solely of a volune nunber, then all files for
that vol une are | NCLUDED or EXCLUDED.

Al'l vol une nunbers in the INCLUDE or EXCLUDE |ist nust refer to a vnl volune
nunber specified in the appropriate SVL or RVL paraneter.

| NCLUDE and EXCLUDE are optional keywords (except for SAVE with NND). |If
neither is specified, HDBACKUP will assune inclusion of all the files for the
vnl vol unes specified in the SVL or RVL paraneter.

I NCLUDE Only the files specified in the file Iist are included in the
SAVE or RESTORE. If a file in the |list does not exist, an error coment
will be listed, and the operator given the option of bypassing the
file.

EXCLUDE The files specified in the file list are excluded fromthe SAVE
or RESTORE; all other files of the vnl volunes specified in the SVL or
RVL paraneter are copied. If a file in the Iist does not exist on the
specified data volunme (SAVE) or the backup (RESTORE), no indication is
given to the operator

* END This required paranmeter ends the HDBACKUP comand specification

| NTERNAL STRUCTURE OF THE BACKUP

For those users interested, this section will show the structure of a backup
Sonme users may find this description helpful in repairing a backup using
SUPERZAP.

Each vol ume (diskette) of a backup has a vol une header sector as the

di skette's first sector. The header sector for volune 1 is the nost inportant
and is used by RESTORE and LI ST to access backup control infornation. The
headers for the other volunes contain roughly the sane information, and are
used during RESTORE to verify that you have nounted the correct vol une and by
SAVE to verify that you don't nount as a new volunme for this SAVE a vol une
that has already been used in the SAVE. The user nust renenber that a file's
sectors can span nany backup vol unes and nust allow for the vol une header
records when conputing where a particular sector of a particular file is

wi thin the backup. The contents of the backup vol une header sector are:

48 byte backup title.

byte backup data in mi dd/yy format.

byte backup tinme in hh:nmss fornat.

byte count of sectors for the table of contents.
byte count of sectors for the error table.

byte count of files in the table of contents.
byte count of nunber errors allowed during SAVE
byte count of sectors per backup vol une.

N AWNE
NNNRFN®O®

C 29 APPENDI X C

9. 2 byte value = this diskette's vol une nunber.
*x*xxxkx% yalid only for volume 1:
10. 1 byte of control bits:
bit 7 =1, the SAVE is conpl ete.
bits 6 - 0, undefined and reserved, must be O.
11. 2 byte count of errors in error table.
12. 2 byte count of volumes for this backup.
13. 3 byte backup total sector count.
14. remmi nder of sector's bytes are OOH

On backup volune 1, the table of contents sectors immediately foll ow the
vol ume header sector. Each sector contains eight 32 byte file entries of the
form

byte file nane, padded on right wth bl anks.
byte file Fil enane extension, padded on right with bl anks.
byt e data vol unme nunber
byte file EOF in FBA fornat.
. byte logical record |l ength (0=256). Not necessarily valid if NND
peci fied during SAVE.
6. 3 byte relative sector nunber within the backup of the file's
header sector.
7. 2 byte relative entry nunber of this entry within the table of
cont ents.
8. 1 byte control bits:
bit 7 =1, this table of contents entry is used.
bit 6 =1, this file is active.
Bit 7-6 = 10, file has been deleted fromthe backup. Actually sone
of it may still be there, but LIST and RESTORE ignore it.
bits 5 - 0, undefined and reserved, nust be 0.

P Wk Www

1
2.
3.
4
5
s

9. The remai nder of the 32 byte entry are bytes OOH

The error table sectors i mediate follow the table of contents. Each sector
has 64 entries of the form

1. 1 byte containing the DOS error code plus 40H |If the byte is OOH
the error has either been corrected by the user or he/she wants it
i gnor ed.

2. 3 byte relative sector nunber within the backup of the file sector
inerror. If the error is corrected or to be ignored, this val ue nust
be set to 0.

The renmai nder of the backup is file data with each file's sectors preceded by
a file header record. If afile's EOF is zero, then only the file's header
record will appear. The user nust renenber that where a file's sectors flow
onto the next backup volune, the first sector on that volunme with be the

vol une' s header sector, not a file sector. The format of a file header is:

1. The first 22 bytes are an exact copy of the first 22 bytes of the
table of contents entry for this file, but with none of the changes to
the-t entry after it was initially created. During RESTORE, these 22
bytes of the file header nust match the 22 bytes fromthe table of
cont ents.

APPENDI X C C 30

2. Each of the renmaining bytes of the file header sector contains the
ones conplement of its relative location in the sector. This makes it

easier to recognize a file header should it be necessary to search for
it.

HDBACKUP EXAMPLES:

1. HDBACKUP

SAVE, BSN=(4, 5), SvVL=(0, 1, 2, 3), *END
This is a copy of user files fromhard disk data volunes 0, 1, 2 and 3 to a
backup whose di skettes will be nounted on the floppy drives associated with
slots 4 and 5 (assuned defined for floppy drives 0 and 1 respectively), wth
backup volume 1 remaining on slot 4's drive and the other backup vol umes
requested on slot 5 s drive as needed. The user must have on hand enough
pre-formatted di skettes for the needs of the backup. Since slots 4 and 5 are
the access to floppy drives 0 and 1, we know that the hard di sk systemis
being run fromthe hard di sk.

2. HDBACKUP

RESTORE, BSN=(4, 5), RvL=(0, 1, 2, 6=3), *END
This is a copy of user files froma backup to data volunes 0, 1, 2 and 6. The
backup diskette volunes will be nounted on the drives for slots 4 and 5 as
described in the above exanple. Al files in the backup are copied, but the
files that originally cane fromvolunme 3 are actually witten to volune 6
i nst ead.

3. HDBACKUP

SAVE, BSN=1, SVL=(2, 3,4, 5,6, 7)

EXCLUDE

XXX/ DAT: 4 YYY/ DAT: 6, *END
This is a copy of all user files fromhard di sk data volunmes 2, 3, 4, 5, 6
and 7 to backup diskettes which will all be nmounted as needed on the fl oppy
drive 1. File XXX/ DAT of volume 4 and file YYY/ DAT of volune 6 will not be
copied to the backup. Since BSN=1 was used for the backup floppy drive, we
know t he systemis being run froma systemdiskette in floppy drive O.

4, HDBACKUP

LI ST, BSN=1, PRI NT, * END
The contents of the backup's table of contents is listed on both the display
and the printer.

5. HDBACKUP

SAVE, BSN=(4, 5), SVL=(1, 2), | NCLUDE

ACCTPYBL/ DAT: 1

ACCTRVBL/ DAT: 1

PAYROLL/ DAT: 2

| NVENTRY/ DAT: 2

*END
A backup is made consisting only of the 4 files specified in the | NCLUDE
list. In this installation, the burden of maki ng backups of valued files has
been placed on the individual users, in this case, accounting.

C 31 APPENDI X C

6. HDBACKUP

SAVE, NND=(TEMPFI LE: 0, N, 6, 3, 720) , BSN=(4, 5)

SvL=(0, 1, 2, 3), | NCLUDE

FI LEOO1: O

FI LEOO2: 0

FI LEOO3: 1

and so on through

FI LE999: 4

*END
In this exanple, the HDBACKUP/ CMD program has been previously nmoved to the
LDOS Hard Di sk Operating System (in the manner described at the NND
di scussion). The HDBACKUP runs under LDOS 5.1.3 and dunps the specified files
fromvolunes 0, 1, 2 and 3 to 4 backup whose diskettes have all been
preformatted as single sided, double density, 5 inch 40 track (with spg = 6,
gpl = 3 and spv = 720). After the hard disk has been reinitialized for
NEWDCOS/ 80 Version 2.5, the HDBACKUP program under NEWDOS/ 80 (wi t hout the NED
parameter) can be used to RESTORE the files fromthe backup to the hard disk.

When NND is specified for a SAVE, such as above, an INCLUDE |ist must be used
to informthe HDBACKUP program of which files to copy to the backup, as the
HDBACKUP program does not read the non- NEWDOS/ 80 directories.

Thi s exanple could be used for single sided, single density 35 track backup
di skettes under LDOS 5.1.3 on the TRS-80 Model | by using replacing the NED
parameter with NND=(TEMPFILE: O, N, 5,2,350). If 40 track di skettes are used,
repl ace 350 with 400.

The TEMPFILE: O fil espec used in this exanple is just our choice of a fil espec

for this exanple; you are free to use any filespec you wish so long as it
conforms to the specifications given for the END paraneter.

APPENDI X C C 32

ACC

al pha

al phanuneri c

APPEND

ASC

ASE

ASPOOL
activation
initial setup

Asychronous Execution

ATTRI B

AUTO

BAS|I C MODULES
BASI C2
BAUD
BDU

bi t

BLI NK
BOOT
BOOT/ SYS
BREAK
buf fer
byt e

CBF
CHAI N
CHAI NBLD
chai ni ng
CHAI NTST
character
CHNON
CFWO
CLEAR
CLOAD
CLOCK
CLGCSE
CLS
C\VD

A

B

BREAK

Mmoo

DELETE
ERASE
KEEP
POPN

| ndex

DD DNN
PR PR

2-14
2-6,4-7
5-3,6-16

[N

1
NNNWOOOORFROOVODOORPFRPROANRE, WER

N R
NN T NO GO

POPR 7-12
POPS 7-12
SASZ 7-12

SS 7-14,12-9
SWAP 7-13

I 7-10

J 7-10

L 7-10
O 7-10,7-14

P 7-10

R 7-10

S 7-10

T 7-10
X 7-10

Z 7-10
doscmd 7-11
CopPY 2-9,12-4,12-9
CREATE 2-18
CvD 8- 20
Cvi 8- 20
Cvs 8- 20

- D -

DATE 2-19,3-11
DDGA 2-15
DDND 2-12
DDSL 2-15
DEBUG - 123 2-20,4-1,3-3,12-2
DEC 10-2
DFG - M NI - DOS 4-6
DFO 11-8
DI 7-4
DI R 2-20
DI RCHECK 5-3,6-12
directory 12-2,10-2
Directory Structure 5-4
Dl R/ SYS 5-1,10-2
Dl SASSEM 5-3,6-5
DI SK BASI C 7-1,8-1
activating 7-2
conmand truncation 7-4
di rect conmands 7-3
enhancenent s 7-1

I / O enhancenent s 8-1
file types 8-1
nodul e overl ays 7-1
DO 2-22,4-7
DCOs 10-2
DCS- CALL 4-12,3-4,10-2
DOS conmand (doscnd) 10-2
DCS RQOUTI NES 3-1
DOS SYSTEM MODULES 5-1
DPDN 2-10
DU 7-4
DUMP 2-22

I NDEX

- E -

EDTASM 5-3,6-14
EDI T direct commands 7-1,7-3
/ or shift up-arrow 7-3
; or shift down-arrow 7-3
7-3
, 7-3
: 7-3
@ 7-3
up- arrow 7-3
down- arr ow 7-3
ECF 10-3
EQL 10-3
EQOM 10-3
EOR 10-3
ECS 10-3
ERROR 2-24,3-2
error nessages 9-1,7-1
DOS 9-1,7-1
BASI C 9-2,7-2
extent el enent 10-3
- F -
fan 10-3
FCB 5-9, 3-9, 3-10, 10-3
FDE 5-6, 10-3
FF FI LE 8-10,10-3,A-39,B-5,B-6,B-7
FI FILE 8-10, 10- 4, A-45, B-15
FI ELD | TEM FI LE 10-4
file 10-4
file item 10-4
fil earea 10-4
fil espec 10-4
FILE TYPE (ft) 8-10
Fl 8-10, A- 45
FF 8-10, A- 39
M 8-10, A-35
MF 8-10, A-30
MJ 8-10, A- 20
FI LE PCSI TI ONI NG (fp) 8-3,10-5,A-1
FI XED | TEM FI LE 8-7,10-4
FMT 2-12
FORMAT 2-24,12-9, 10-4
FORMS 2-26
FPDE 5-7,10-5
FREE 2-27
FXDE 5-9, 10-5
- G -
GAT sector 5-5,12-2,10-5
GET 8-12,A-10
granul e 10-5
— H -
hash code 10-5
hexadeci nal 10-5

I NDEX

HI MEM 2-27,12-8,10-6
H T sector 5-6,10-6
S
I/ O error recovery 8-19
/O 1link or path 10-6
| LF 2-14
| GEL 8-4,10-6
| GEL expression 8-5,10-6
| GELSN 10-6
i tem group 10-7
- J -

JKL 2-27,4-13
- K -

KDD 2-13
KDN 2-13
Kl LL 2-28
— L -

LC 2-29
LCDVR 2-29
I en 10-7
LI B 2-30
LI NES 2-26
LI ST 2-30
LMOFFSET 5-3,6-9
LOAD 2-31,3-7,7-4

V option 7-4
LOC 8-18, A- 18
LOCK 2-3,2-40
LOF A 17
| ogi cal record 10-7
Lower Case Suppression 7-8
LRECL 10-7
LRL 2-18
LSET 8- 20
LumP 12-2,10-7

- M-

MARKED | TEM FI LE 8-7,10-7
VDBORT 2-31
MDCOPY 2-32
MDRET 2-32
MERGE 7-5
MF FI LE 8-10,10-7, A-30,B-12,B- 14
M FILE 8-10, 10-7, A- 35,

B- 14, B- 15, B- 17
M NI - DOS - DFG 4-5
MKD$ 8- 20
MKI $ 8- 20
MKS$ 8- 20
ns 10-7
MJ FI LE 8-10, 10-7, A-20 , B-2,

B-3,B-4,B-9,B-10,B-11

- N- REF 2-40

nul | 10-7 - S -
nul | character 10- 8
: sect or 10-9
null string 10-8 SETCOM 2. 44
NDNW 2-12
SN 2-13
NDN 2-13
SOR 10-9
NDPW 2-12
SPDN 2-10
NFMT 2-12
T 5. a4 SPW 2-12
STMI 2-45
- 0 - SUPERZAP 5-3,6-1
di spl ay node 6-3
gw 2'2112 functi on node 6-1
) nmodi fy node 6- 4
OPEN 8-9,3-5,3-6,9,10-8,A-6 SCOPY 6-3
- p- SYSTEM 2- 45, 12-
PARI TY 2-44 ﬁg 3232
partial record I/0O 10-8 AC 2. 46
PAUSE 2-33 AD 5. 46
PDRI VE 2-33,12-2 AE 5. 46
A 2-317 AF 2-46
DDGA 2-37
AG 2-46
DDSL 2-37
AH 2- 46
GPL 2-37 Al 2- 47
SPT 2-37 AJ 547
Tc 2- 36 AK 2-47
TD 2- 36
AL 2-47
TI 2-34
AM 2- 47
TSR 2-37 AN 5. 47
PFST 2-25 A0 547
PFTC 2-25 AP 2- 47
PRI NT 2-39
. . . AQ 2-47
print/input file 10-8 AR 5. 47
PROT 2-3,2-40 AS 2-48
PSEUDO FI ELD 8-17 AT 2-48
PUT 8- 14, A- 13 AV 2-48
“R- AW 2- 48
AX 2-48
R 2-41 AY 2-48
RBA 12-1, 10-8 A7 2. 48
REC 2-18 BA 2-48
REF -7 BB 2-48
REG STRATI ON 1-1 BC 2. 49
RENMBA 8- 16, 10- 8 BD 2. 49
REMRA 8- 16, 10- 8 BE 2-49
RENEW 7-17 BG 2. 49
RENUM 7-5 BH 2. 49
Reporting errors 11-1,11-2 Bl 2-49
reset/ power-on 10-8 BJ 2-49
ROUTE 2-42,12-8 BK 2- 49
RUN /-4 BN 2-49
V option 7-4 SYSTEM Fi | es Requi red 5-1
RUN- ONLY 7-2,7-8 SYSTEM reduced si ze 5-4

3 I NDEX

STOP

track
TI VE
timer interrupts

- U -

uBB

UDF

UNLOCK

UPD

UPDATE SERVI CE

usD

USR

user segnented file

-V -

VERI FY
vi ce

- W=

W DTH

whol e record 1/0O
WORD

VRDI RP

XLF

ZAP

ZAPS
Di stribution
Duplication
For mat
Installation
Pr ocedur e
Updat e Service

I NDEX

2- 44

2-13

2-40
2-4,2-14
11-6

2-13
2-14,2-41
10-9

2-51
2-44

2-26
10-9
2-44
2-52

2-14

10-9

11-5
11-7
11-2
1-4,11-5,11-6
11-4
11-6

- SYMBOLS -

[ext 2-14, 2-41
*nanme routine 3-10, 3-11
123 - DEBUG ,
/ or shift up-arrow

; or shift down-arrow

"

=

©
|

@
up- arr ow
down- ar r ow

NNNNNNNA
WWWwwwwow kK

	Chapters 1-12
	APPENDICES
	APPENDIX A
	File Positioning
	OPEN
	CLOSE
	GET
	PUT
	LOF
	LOC
	MU FILES
	MF FILES
	MI FILES
	FF FILES
	FI FILES

	APPENDIX B
	Write records sequentially to a MU file.
	Read records sequentially from a MU file.
	Sequentially read and update the records of a MU file.
	Read in, sort in memory and write back out a MU file.
	Write records sequentially to a FF file.
	Read records sequentially from a FF file.
	Sequentially read and update the records of a FF file.
	Randomly read and optionally update the records of a FF file.
	Sequentially write records to a MU file and sequentially write records to a FF file that serve as an index into the MU file.
	Randomly read and optionally update the records of an indexed MU file.
	Sequentially write different type records to a MU file.
	Sequentially read and optionally update records from a MU file containing multiple record types.
	Sequentially write records to a MF file (marked item file of fixed length records).
	Randomly read and optionally update records of a MF file.
	Sequentially write to a MI file.
	Sequentially read a MI file.
	Sequentially write records to a FI file and sequentially write index records at the end of that file to indexing into the main records.
	Randomly read and optionally update the data records of an indexed MI file.

	APPENDIX C
	Overview
	Comments and Restrictions
	Changes to PDRIVE for Hard Disk Operation
	Formatting your Hard Disks
	Moving NEWDOS/80 Version 2.5 to the Hard Disk
	Defining PDRIVE Slots from a Volume Definition File
	Backing Up Hard Disks to Diskette

	Index

